Cerebral oximetry as method of diagnostics of perinatal brain pathology in newborns with intrauterine growth retardation

Abstract

The noninvasive monitoring by near-infrared spectroscopy (NIRS) is the perspective method for early diagnostics of the perinatal brain disorders.

Aim. We have studied cerebral oximetry values during the sleep-wake cycle in full-term newborns with intrauterine growth retardation (IUGR).

Material and methods. 15 newborns with IUGR were included in the research group, and 38 newborns in the control group. Cerebral oximetry (CrS02) was measured by NIRS (Somanetic INVOS 5100C, USA) from the left frontoparietal region and was recorded simultaneously by the polysomnography. The fraction of the tissue oxygen extraction (FTOE) was calculated by using SaO2 (pulse oximeter Radical “Masimo”) and CrS02. It was analyzed for 15 minutes by polysomnography-defined: quiet, active sleep, and wake.

Results and discussion. Cerebral oxygen saturation in newborns with IUGR were significantly higher during sleep and wake. Nevertheless, FTOE was considerably lower in the research group than in the control group. The number of erythrocytes with an optimal activity in the research group was 42.8±2.3% versus 60.1±1.2% in control newborns (p<0.05). The low oxygen consumption during the active phase of the first cycle of the sleeping (REM) sleep and wake is indicators of the perinatal defeat of brain functional development.

Conclusion. The usage of NIRS will be a new method for the diagnostic and prognosis of the perinatal pathology of the brain.

Keywords:newborns, intrauterine growth retardation, cerebral oximetry, sleep, wake

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

For citation: Evsyukova I.I., Kovalchuk-Kovalevskaya O.V., Zvereva N.A., Gurieva N.G., Velichko T.A. Cerebral oximetry as method of diagnostics of perinatal brain pathology in newborns with intrauterine growth retardation. Neonatologiya: novosti, mneniya, obuchenie [Neonatology: News, Opinions, Training]. 2020; 8 (1): 9–14. doi: 10.33029/2308-2402-2020-8-1-9-14 (in Russian)

Received 16.09.2019. Accepted 12.02.2020.

References

1. Bale T.L., Baram T.Z., Brown A.S., et al. Early life programming and neurodevelopmental disorders. Biol Psychiatry. 2010; 68: 314-9. DOI: 10.1016/j.biopsych.2010.05.028.

2. Kramer M.S. The epidemiology of adverse pregnancy outcomes: an overview. J Nutr. 2003; 133 (5 Suppl 2): 1592S-6S. DOI: 10.1093/jn/133.5.1592S.

3. Sharma D., Shastri S., Sharma P. Intrauterine growth restriction: antenatal and postnatal aspects. Clin Med Insights Pediatr. 2016; 10: 67-83. DOI: 10.4137/CMPed.S40070.

4. Murray E., Fernandes M., Fazel M., et al. Differential effect of intrauterine growth restriction on childhood neurodevelopment: a systematic review. BLOG. 2015; 122 (8): 1062-72. DOI: 10.1111/1471-0528.13435.

5. Arutjunyan A.V., Evsyukova I.I., Polyakova V.O. The role of melatonin in the morphofunctional development of the brain in early ontogenesis. Neyrokhimiya [Neurochemistry]. 2019; 36 (3): 208-17. (in Russia)

6. Wang Y., Fu W., Liu J. Neurodevelopment in children with intrauterine growth restriction: adverse effects and interventions. J Matern Fetal Neonatal Med. 2016; 29 (4): 660-8. DOI: 10.3109/14767058.2015.1015417.

7. Hartkopf J., Schleger F., Keune J., et al. Impact of intrauterine growth restriction on cognitive and motor development at 2 years of age. Front Physiol. 2018; 9: 1278. DOI: 10.3389/fphys.2018.01278.

8. de Vries L.S., Benders M.J.N.L., Groenendaal F. Imaging the premature brain: ultrasound or MRT? Neuroradiology. 2013; 55 (22): 13-22. DOI: 10.1007/s00234-013-1233-y.

9. Malhotra A., Ditchfield M., Fahey M.C., et al. Detection and assessment of brain injury in the growth-restricted fetus and neonate. Pediatr Res. 2017; 82 (2): 184-93. DOI: 10.1038/pr.2017.37.

10. Bruno C.L., Bengani S., Gomes W.A., et al. MRI differences associated with inrauterine growth restriction in preterm infants. Neonatology. 2017; 111 (4): 317-23. DOI: 10.1159/000453576.

11. Evsyukova I.I. Clinical and neurophysiological aspects of predicting the consequences of adverse effects on the child's health during its intrauterine development. Mezhdunarodnye klinicheskie obzory [International Medical Reviews]. 1994; 2 (3): 163-8. (in Russia)

12. Geva R., Yaron H., Kuint J. Neonatal sleep predict attention orienting and distractibility. J Atten Disord. 2016; 20 (2): 133-50. DOI: 10.1177/1087054713491493.

13. Evsyukova I.I. Formation of mechanisms for regulating the rhythm of heart activity and respiration in the sleep cycle in newborns under various conditions of intrauterine development: Autoabstract of Diss. Leningrad, 1983. (in Russian)

14. Dereymaeker A., Pillay K., Vervisch J., et al. Review of sleep-EEG in preterm and term neonates. Early Hum Dev. 2017; 113: 87-103. DOI: 10.1016/j.earlhumdev.2017.07.003.

15. Biallas M., Trajkovic I., Hagmann C., et al. Multimodal recording of brain activity in term newborns during photic stimulation by near-infrared spectroscopy and electroencephalography. J Biomed Opt. 2012; 17 (8): 086011-1. DOI: 10.1117/1.JBO.17.8.086011.

16. Merhar S.L., Chau V. Neuroimaging and other neurodiagnostic test in neonatal encephalopathy. Clin Perinatol. 2016; 43 (3): 511-27. DOI: 10.1016/j.clp.2016.04.009// PLoS One. 2018. Vol. 13, N 9. Article ID e0204268. DOI: 10.1371/ journal.pone.0204268.

25. Mohanty J.G., Nagababu E., Rifkind J.M. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging // Front. Physiol. 2014. Vol. 5. Article ID 84. P. 1-6. DOI: 10.3389/fphys.2014.00084.

26. Миндукшев И.В., Кривошлык В.В., Добрылко И.А. и др. Нарушение де-формационых и транспортных характеристик эритроцитов при развитии у них апоптоза // Биологические мембраны. 2010. Т. 27, № 1. С. 1-9.

27. Евсюкова И.И., Якушенко Н.С., Андреева А.А. и др. Особенности функционального состояния эритроцитов у здоровых доношенных новорожденных детей // Физиология человека. 2014. Т. 40, № 2. С. 59-66.

28. Белкин А.М., Ялонецкий И.З., Абражевич Т.Г. Деформируемость мембран эритроцитов и ее изменение у новорожденных, перенесших внутриутробную гипоксию и инфекции // Международный научно-исследовательский журнал. 2015. № 4. С. 47-50.

29. Шевченко О.Т. Состояние мозгового кровообращения в цикле сна у здоровых и перенесших гипоксию новорожденных детей : автореф. дис. ... канд. мед. наук. Ленинград, 1986.

30. Miller S.L., Huppi P.S., Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome // J. Physiol. 2016. Vol. 594, N 4. P. 807-823. DOI: 10.1113/jp271402

31. Kozberg M., Hillman E. Neurovascular coupling and energy metabolism in the developing brain // Prog. Brain Res. 2016. Vol. 225. P. 213-242. DOI: 10.1016/bs.pbr.2016.02.002.

32. Miyauchi S., Misaki M., Kan S. et al. Human brain activity time-locked to rapid eye movements during REM sleep // Exp. Brain Res. 2009. Vol. 192, N 4. P. 657-667. DOI: 10.1007/s00221-008-1579-2.

17. Shellhaas R.A., Burns J.W., Hassan F., et al. Neonatal sleep-wake analyses predict 18 month neurodevelopmental outcomes. Sleep. 2017; 4 (11): 1-9. DOI: 10.1093/sleep/zsx144.

18. Pellicer A., Bravo M.C. Near-infrared spectroscopy: a methodology-focused review. Semin Fetal Neonatal Med. 2011; 16 (1): 42-9. DOI: 10.1016/j.siny.2010.05.003.

19. Sood B.J., McLaughlin K., Cortez J. Near-infrared spectroscopy: applications in neonates. Semin Fetal Neonatal Med. 2015; 20 (3): 164-72. DOI: 10.1016/j.siny.2015.03.008.

20. Weindling A.M. Peripheral oxygenation and management in the perinatal period. Semin Fetal Neonatal Med. 2010; 15 (4): 208-15. DOI: 10.1016/j.siny.2010.03.005.

21. Cohen E., Baets W., Alderliesten T., et al. Growth restriction and gender influence cerebral oxygenation in preterm neonates. Arch Dis Child Fetal Neonatal Ed. 2016; 101 (2): 156-61. DOI: 10.1136/archdischild-2015-308843.

22. Bozzetti V., Paterlini G., van Bel F., et al. Cerebral and somatic NIRS-determined oxygenation in IUGR preterm infants during transition. J Matern Fetal Neonatal Med. 2016; 29 (3): 443-6. DOI: 10.3109/14767058.2014.1003539.

23. Ishii H., Takami T., Fujioka T., et al. Comparison of changes in cerebral and systemic perfusion between appropriate- and small-for-gestational-age infants during the first three days after birth. Brain Dev. 2014; 36 (5): 380-7. DOI: 10.1016/j.braindev.2013.06.006.

24. Terstappen F., Paauw N.D., Alderliesten T., et al. Elevated renal tissue oxygenation in premature fetal growth restricted neonates: an observational study. PLoS One. 2018; 13 (9): e0204268. DOI: 10.1371/journal.pone.0204268.

25. Mohanty J.G., Nagababu E., Rifkind J.M. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front Physiol. 2014; 5: 84. DOI: 10.3389/fphys.2014.00084.

26. Mindukchev I.V., Krivochlik V.V., Dobrilko I.A., et al. Violation of the deformation and transport characteristics of red blood cells in the development of apoptosis. Biologicheskie membrany [Biological Membrane]. 2010; 27 (1): 1-9. (in Russian)

27. Evsyukova I.I., Yakuchenko N.C., Andreeva A.A., et al. Features of the functional state of red blood cells in healthy full-term newborns. Fiziologiya cheloveka [Human Physiology]. 2014; 40 (2): 59-66. (in Rus- sian)

28. Belkin A.M., Yalonetski I.Z., Abrashevich T.G. Deformability of erythrocyte membranes and its changes in newborns who have undergone intrauterine hypoxia and infections. Mezhdunarodniy nauchno-issledovatel'skiy zhurnal [Research Journal of International Studies]. 2015; (4): 47-50. (in Russian)

29. Shevchenko O.T. State of cerebral circulation in the sleep cycle in healthy and hypoxic newborns: Autoabstract of Diss. Leningrad. 1986. (in Russian)

30. Miller S.L., Huppi P.S., Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J Physiol. 2016; 594 (4): 807-23. DOI: 10.1113/jp271402.

31. Kozberg M., Hillman E. Neurovascular coupling and energy metabolism in the developing brain. Prog Brain Res. 2016; 225: 213-42. DOI: 10.1016/bs.pbr.2016.02.002.

32. Miyauchi S., Misaki M., Kan S., et al. Human brain activity time-locked to rapid eye movements during REM sleep. Exp Brain Res. 2009; 192 (4): 657-67. DOI: 10.1007/s00221-008-1579-2.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Degtyarev Dmitriy Nikolaevich
Doctor of Medical Sciences, Professor, Deputy Director for Scientific Research of the V.I. Kulakov Obstetrics, Gynecology and Perinatology National Medical Research Center of Ministry of Healthсаre of the Russian Federation, Head of the Chair of Neonatology at the Clinical Institute of Children's Health named after N.F. Filatov, I.M. Sechenov First Moscow State Medical University, Chairman of the Ethics Committee of the Russian Society of Neonatologists, Moscow, Russian Federation

ORCID iD 0000-0001-8975-2425

Journals of «GEOTAR-Media»