Fine tuning non-invasive respiratory support to prevent lung injury in the extremely premature infant

Abstract

Within the last decades, therapeutic advances, such as antenatal corticosteroids, surfactant replacement, monitored administration of supplemental oxygen, and sophisticated ventilatory support have significantly improved the survival of extremely premature infants. In contrast, the incidence of some neonatal morbidities has not declined. Rates of bronchopulmonary dysplasia (BPD) remain high and have prompted neonatologists to seek effective strategies of non-invasive respiratory support in high risk infants in order to avoid harmful effects associated with invasive mechanical ventilation. There has been a stepwise replacement of invasive mechanical ventilation by early continuous positive airway pressure (CPAP) as the preferred strategy for initial stabilization and for early respiratory support of the premature infant and management of respiratory distress syndrome. However, the vast majority of high risk babies are mechanically ventilated at least once during their NICU stay. Adjunctive therapies aiming at the prevention of CPAP failure and the support of functional residual capacity have been introduced into clinical practice, including alternative techniques of administering surfactant as well as non-invasive ventilation approaches. In contrast, the strategy of applying sustained lung inflations in the delivery room has recently been abandoned due to evidence of higher rates of death within the first 48 h of life.

Keywords:preterm infant, respiratory distress syndrome (RDS), lung injury, bronchopulmonary dysplasia (BPD), non-invasive ventilation, noninvasive respiratory support, continuous positive airway pressure (CPAP), sustained lung inflation (SLI)

Glaser K., Speer C.P., Wright C.J. Fine tuning non-invasive respiratory support to prevent lung injury in the extremely premature infant. Front. Pediatr. 2020; 7:544. DOI: https://doi.org/10.3389/fped.2019.00544

References

1. Doyle L.W., Faber B., Callanan C., Freezer N., Ford G.W., Davis N.M. Bronchopulmonary dysplasia in very low birth weight subjects and lung function in late adolescence. Pediatrics. 2006; 118: 108-13. DOI: 10.1542/ peds.2005-2522

2. Davidson L.M., Berkelhamer S.K. Bronchopulmonary dysplasia: chronic lung disease of infancy and long-term pulmonary outcomes. J Clin Med. 2017; 6: 4. DOI: 10.3390/jcm6010004

3. Stoll B.J., Hansen N.I., Bell E.F., Walsh M.C., Carlo W.A ., Shankaran S., et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012. JAMA. 2015; 314: 1039-51. DOI: 10.1001/ jama.2015.10244

4. Van Marter L.J., Allred E.N., Pagano M., Sanocka U., Parad R., Moore M., et al. Do clinical markers of barotrauma and oxygen toxicity explain interhospital variation in rates of chronic lung disease? The neonatology committee for the developmental network. Pediatrics. 2000; 105: 1194-201. DOI: 10.1542/peds.105.6.1194

5. Laughon M., Bose C., Allred E.N., O’Shea T.M., Ehrenkranz R.A., Van Marter L.J., et al. Antecedents of chronic lung disease following three patterns of early respiratory disease in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2011; 96: F114-20. DOI: 10.1136/adc.2010.182865

6. Dargaville PA., Tingay D.G. Lung protective ventilation in extremely preterm infants. J Paediatr Child Health. 2012; 48: 740-6. DOI: 10.1111/j.1440-1754.2012.02532.x

7. Rhodes P.G., Hall R.T., Leonidas J.C. Chronic pulmonary disease in neonates with assisted ventilation. Pediatrics. 1975; 55: 788-96.

8. Taghizadeh A., Reynolds E.O. Pathogenesis of bronchopulmonary dysplasia following hyaline membrane disease. Am J Pathol. 1976; 82: 241-64.

9. Cools F., Offringa M., Askie L.M. Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants. Cochrane Database Syst Rev. 2015; 3:CD000104. DOI: 10.1002/14651858.CD000104.pub4

10. Wright C.J., Polin R.A., Kirpalani H. Continuous positive airway pressure to prevent neonatal lung injury: how did we get here, and how do we improve? J Pediatr. 2016; 173: 17-24.e12. DOI: 10.1016/j.jpeds. 2016.02.059

11. Klingenberg C., Wheeler K.I., McCallion N., Morley C.J., Davis P.G. Volumetargeted versus pressure-limited ventilation in neonates. Cochrane Database Syst Rev. 2017; 10: CD003666. DOI: 10.1002/14651858. CD003666.pub4

12. Heldt G.P., McIlroy M.B. Dynamics of chest wall in preterm infants. J Appl Physiol. 1987; 62: 170-4. DOI: 10.1152/jappl.1987.62.1.170

13. Warley M.A., Gairdner D. Respiratory distress syndrome of the newborn-principles in treatment. Arch Dis Child. 1962; 37: 455-65. DOI: 10.1136/adc.37.195.455

14. Donald I., Lord J. Augmented respiration; studies in atelectasis neonatorum. Lancet. 1953; 1: 9-17. DOI: 10.1016/S0140-6736(53)92511-2

15. Bancalari E., Gerhardt T., Monkus E. Simple device for producing continuous negative pressure in infants with IRDS. Pediatrics. 1973; 52: 128-31.

16. Gregory G.A., Kitterman J.A., Phibbs R.H., Tooley W.H., Hamilton W.K. Treatment of the idiopathic respiratory-distress syndrome with continuous positive airway pressure. N Engl J Med. 1971; 284: 1333-40. DOI: 10.1056/NEJM197106172842401

17. Kattwinkel J., Fleming D., Cha C.C., Fanaroff A.A., Klaus M.H. A device for administration of continuous positive airway pressure by the nasal route. Pediatrics. 1973; 52: 131-4.

18. Rhodes P.G., Hall R.T. Continuous positive airway pressure delivered by face mask in infants with the idiopathic respiratory distress syndrome: a controlled study. Pediatrics. 1973; 52: 1-5.

19. Roberton N.R. Management of hyaline membrane disease. Arch Dis Child. 1979; 54: 838-44. DOI: 10.1136/adc.54.11.838

20. Diblasi R.M. Nasal continuous positive airway pressure (CPAP) for the respiratory care of the newborn infant. Respir Care. 2009; 54: 120935.

21. Avery M.E., Tooley W.H., Keller J.B., Hurd S.S., Bryan M.H., Cotton R.B., et al. Is chronic lung disease in low birth weight infants preventable? A survey of eight centers. Pediatrics. 1987; 79: 26-30.

22. Gittermann M.K., Fusch C., Gittermann A.R., Regazzoni B.M., Moessinger A.C. Early nasal continuous positive airway pressure treatment reduces the need for intubation in very low birth weight infants. J Pediatr. 1997; 156: 384-8. DOI: 10.1007/s004310050620

23. Yost C.C., Soil R.F. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane Database Syst Rev. 2012; 2000: CD001456. DOI: 10.1002/14651858.CD001456

24. Morley C.J. Systematic review of prophylactic vs rescue surfactant. Arch Dis Child Fetal Neonatal Ed. 1997; 77: F70 - 74. DOI: 10.1136/ fn.77.1.F70

25. Soll R.F., Morley C.J. Prophylactic versus selective use of surfactant in preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2012; 2001: CD000510. DOI: 10.1002/14651858. CD000510

26. Rojas-Reyes M.X., Morley C.J., Soll R. Prophylactic versus selective use of surfactant in preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2012; 3:CD000510. DOI: 10.1002/14651858.CD000510.pub2

27. Horbar J.D., Carpenter J.H., Buzas J., Soll R.F., Suresh G., Bracken M.B., et al. Timing of initial surfactant treatment for infants 23 to 29 weeks’ gestation: is routine practice evidence based? Pediatrics. 2004; 113: 1593-602. DOI: 10.1542/peds.113.6.1593

28. Collaborative European Multicenter Study Group. Surfactant replacement therapy for severe neonatal respiratory distress syndrome: an international randomized clinical trial. Pediatrics. 1988; 82: 683-91.

29. Kendig J.W., Notter R.H., Cox C., Reubens L.J., Davis J.M., Manis-calco W.M., et al. A comparison of surfactant as immediate prophylaxis and as rescue therapy in newborns of less than 30 weeks’ gestation. N Engl J Med. 1991; 324: 865-71. DOI: 10.1056/NEJM199103283 241301

30. Bancalari E.H., Jobe A.H. Respiratory course of extremely preterm infants: a dilemma for diagnosis and terminology. J Pediatr. 2012; 161: 585-8. DOI: 10.1016/j.jpeds.2012.05.054

31. Morley C.J., Davis P.G., Doyle L.W., Brion L.P., Hascoet J.M., Carlin J.B., et al. Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med. 2008; 358: 700-8. DOI: 10.1056/NEJMoa072788

32. Finer N.N., Carlo W.A., Walsh M.C., Rich W., Gantz M.G., Lap-took A.R., et al. Early CPAP versus surfactant in extremely preterm infants. N Engl J Med. 2010; 362: 1970-9. DOI: 10.1056/NEJMoa0911783

33. Dunn M.S., Kaempf J., de Klerk A., de Klerk R., Reilly M., Howard D., et al. Randomized trial comparing 3 approaches to the initial respiratory management of preterm neonates. Pediatrics. 2011; 128: e1069-76. DOI: 10.1542/peds.2010-3848

34. Fischer H.S., Bdhrer C. Avoiding endotracheal ventilation to prevent bronchopulmonary dysplasia: a meta-analysis. Pediatrics. 2013; 132: e1351-60. DOI: 10.1542/peds.2013-1880

35. Schmolzer G.M., Kumar M., Pichler G., Aziz K., O’Reilly M., Cheung P.Y. Non-invasive versus invasive respiratory support in preterm infants at birth: systematic review and meta-analysis. BMJ. 2013; 347: f5980. DOI: 10.1136/bmj.f5980

36. Committee on Fetus and Newborn, American Academy of P. Respiratory support in preterm infants at birth. Pediatrics. 2014; 133: 171-4. DOI: 10.1542/peds.2013-3442

37. Sweet D.G., Carnielli V., Greisen G., Hallman M., Ozek E., Te Pas A., et al. European consensus guidelines on the management of respiratory distress syndrome - 2019 update. Neonatology. 2019; 115: 432-50. DOI: 10.1159/000499361

38. Wright C.J., Sherlock L.G., Sahni R., Polin R.A. Preventing continuous positive airway pressure failure: evidence-based and physiologically sound practices from delivery room to the neonatal intensive care unit. Clin Perinatol. 2018; 45: 257-71. DOI: 10.1016/j.clp.2018.01.011

39. Sandri F., Plavka R., Ancora G., Simeoni U., Stranak Z., Martinelli S., et al. Prophylactic or early selective surfactant combined with nCPAP in very preterm infants. Pediatrics. 2010; 125: e1402-9. DOI: 10.1542/ peds.2009-2131

40. Dargaville P.A., Aiyappan A., De Paoli A.G., Dalton R.G., Kuschel C.A., Kamlin C.O., et al. Continuous positive airway pressure failure in preterm infants: incidence, predictors and consequences. Neonatology. 2013; 104: 8-14. DOI: 10.1159/000346460

41. Roberts C.T., Owen L.S., Fraisland D.H., Doyle L.W., Davis P.G., Manley B.J. Predictors and outcomes of early intubation in infants born at 28-36 weeks of gestation receiving noninvasive respiratory support. J Pediatr. 2019; 2019: S0022-3476(19)31162-X. DOI: 10.1016/ j.jpeds.2019.09.026

42. Vyas H., Field D., Milner A.D., Hopkin I.E. Determinants of the first inspiratory volume and functional residual capacity at birth. Pediatr Pulm-onol. 1986; 2: 189-93. DOI: 10.1002/ppul.1950020403

43. Lista G., Castoldi F., Cavigioli F., Bianchi S., Fontana P. Alveolar recruitment in the delivery room. J Matern Fetal Neonatal Med. 2012; 25 (Suppl. 1): 39-40. DOI: 10.3109/14767058.2012.663164

44. Schmolzer G.M., Kumar M., Aziz K., Pichler G., O’Reilly M.Lista G., et al. Sustained inflation versus positive pressure ventilation at birth: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2015; 100: F361-8. DOI: 10.1136/archdischild-2014-306836

45. Lindner W., Hogel J., Pohlandt F. Sustained pressure-controlled inflation or intermittent mandatory ventilation in preterm infants in the delivery room? A randomized, controlled trial on initial respiratory support via nasopharyngeal tube. Acta Paediatr. 2005; 94: 303-9. DOI: 10.1080/08035250410023647

46. Te Pas A.B., Walther FJ. A randomized, controlled trial of delivery-room respiratory management in very preterm infants. Pediatrics. 2007; 120: 322-9. DOI: 10.1542/peds.2007-0114

47. Lista G., Boni L., Scopesi F., Mosca F., Trevisanuto D., Messner H., et al. Sustained lung inflation at birth for preterm infants: a randomized clinical trial. Pediatrics. 2015; 135: e457-64. DOI: 10.1542/peds.2014-1692

48. Kirpalani H., Ratcliffe S.J., Keszler M., Davis P.G., Foglia E.E., Te Pas A., et al. Effect of sustained inflations vs intermittent positive pressure ventilation on bronchopulmonary dysplasia or death among extremely preterm infants: the sail randomized clinical trial. JAMA. 2019; 321: 1165-75. DOI: 10.1001/jama.2019.1660

49. More K., Sakhuja P., Shah P.S. Minimally invasive surfactant administration in preterm infants: a meta-narrative review. JAMA Pediatr. 2014; 168: 901-8. DOI: 10.1001/jamapediatrics.2014.1148

50. Isayama T., Iwami H., McDonald S., Beyene J. Association of noninvasive ventilation strategies with mortality and bronchopulmonary dysplasia among preterm infants: a systematic review and meta-analysis. JAMA. 2016; 316: 611-24. DOI: 10.1001/jama.2016.10708

51. Kribs A., Pillekamp F., Hdnseler C., Vierzig A., Roth B. Early administration of surfactant in spontaneous breathing with nCPAP: feasibility and outcome in extremely premature infants (postmenstrual age </=27 weeks). Paediatr Anaesth. 2007; 17: 364-9. DOI: 10.1111/j.1460-9592.2006.02126.x

52. Stevens T.P., Harrington E.W., Blennow M., Soll R.F. Early surfactant administration with brief ventilation vs. selective surfactant and continued mechanical ventilation for preterm infants with or at risk for respiratory distress syndrome. Cochrane Database Syst Rev. 2007; 2007: CD003063. DOI: 10.1002/14651858.CD003063.pub3

53. Kribs A. Minimally invasive surfactant therapy and noninvasive respiratory support. Clin Perinatol. 2016; 43: 755-71. DOI: 10.1016/ j.clp.2016.07.010

54. Herting E., Hartel C., Gopel W. Less invasive surfactant administration (LISA): chances and limitations. Arch Dis Child Fetal Neonatal Ed. 2019; 104: F655-9. DOI: 10.1136/archdischild-2018-316557

55. Dargaville P.A., Aiyappan A., Cornelius A., Williams C., De Paoli A.G. Preliminary evaluation of a new technique of minimally invasive surfactant therapy. Arch Dis Child Fetal Neonatal Ed. 2011; 96: F243-8. DOI: 10.1136/adc.2010.192518

56. Isayama T., Chai-Adisaksopha C., McDonald S.D. Noninvasive ventilation with vs without early surfactant to prevent chronic lung disease in preterm infants: a systematic review and meta-analysis. JAMA Pediatr. 2015; 169: 731-9. DOI: 10.1001/jamapediatrics.2015.0510

57. Brix N., Sellmer A., Jensen M.S., Pedersen L.V., Henriksen TB. Predictors for an unsuccessful INtubation-SURfactant-Extubation procedure: a cohort study. Pediatr. 2014; 14: 155. DOI: 10.1186/1471-2431-14-155

58. Verder H., Agertoft L., Albertsen P., Christensen N.C., Curstedt T., Ebbesen F., et al. [Surfactant treatment of newborn infants with respiratory distress syndrome primarily treated with nasal continuous positive air pressure. A pilot study]. Ugeskrift for laeger. 1992; 154: 2136-9.

59. Barkhuff W.D., Soll R.F. Novel surfactant administration techniques: will they change outcome? Neonatology. 2019; 115: 411-22. DOI: 10.1159/000497328

60. Gopel W., Kribs A., Ziegler A., Laux R., Hoehn T., Wieg C., et al. Avoidance of mechanical ventilation by surfactant treatment of spontaneously breathing preterm infants (AMV): an open-label, randomised, controlled trial. Lancet. 2011; 378: 1627-34. DOI: 10.1016/S0140-6736(11)60986-0

61. Gopel W., Kribs A., Hartel C., Avenarius S., Teig N., Groneck P., et al. Less invasive surfactant administration is associated with improved pulmonary outcomes in spontaneously breathing preterm infants. Acta Paediatr. 2015; 104: 241-6. DOI: 10.1111/apa.12883

62. Kanmaz H.G., Erdeve O., Canpolat F.E., Mutlu B., Dilmen U. Surfactant administration via thin catheter during spontaneous breathing: randomized controlled trial. Pediatrics. 2013; 131: e502-9. DOI: 10.1542/ peds.201 2-0603

63. Bao Y., Zhang G., Wu M., Ma L., Zhu J. A pilot study of less invasive surfactant administration in very preterm infants in a Chinese tertiary center. Pediatr. 2015; 15: 21. DOI: 10.1186/s12887-015-0342-7

64. Mohammadizadeh M., Ardestani A.G., Sadeghnia A.R. Early administration of surfactant via a thin intratracheal catheter in preterm infants with respiratory distress syndrome: Feasibility and outcome. J Res Pharm Pract. 2015; 4: 31-6. DOI: 10.4103/2279-042X.150053

65. Kribs A., Roll C., Gopel W., Wieg C., Groneck P., Laux R., et al. Non-intubated surfactant application vs conventional therapy in extremely preterm infants: a randomized clinical trial. JAMA Pediatr. 2015; 169: 723-30. DOI: 10.1001/jamapediatrics.2015.0504

66. Olivier F., Nadeau S., Belanger S., Julien A.S., Masse E., Ali N., et al. Efficacy of minimally invasive surfactant therapy in moderate and late preterm infants: a multicentre randomized control trial. Paediatr Child Health. 2017; 22: 120-4. DOI: 10.1093/pch/pxx033

67. Rigo V., Lefebvre C., Broux I. Surfactant instillation in spontaneously breathing preterm infants: a systematic review and meta-analysis. J Pediatr. 2016; 175: 1933-42. DOI: 10.1007/s00431-016-2789-4

68. Aldana-Aguirre J.C., Pinto M., Featherstone R.M., Kumar M. Less invasive surfactant administration versus intubation for surfactant delivery in preterm infants with respiratory distress syndrome: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2017; 102: F17-23. DOI: 10.1136/archdischild-2015-310299

69. Hartel C., Paul P., Hanke K., Humberg A., Kribs A., Mehler K., et al. Less invasive surfactant administration and complications of preterm birth. Sci Rep. 2018; 8: 8333. DOI: 10.1038/s41598-018-26437-x

70. Owen L.S., Manley B.J. Nasal intermittent positive pressure ventilation in preterm infants: equipment, evidence, and synchronization. Semin Fetal Neonatal Med. 2016; 21: 146-53. DOI: 10.1016/j.siny.2016.01.003

71. Lemyre B., Laughon M., Bose C., Davis P.G. Early nasal intermittent positive pressure ventilation (NIPPV) versus early nasal continuous positive airway pressure (NCPAP) for preterm infants. Cochrane Database Syst Rev. 2016; 12: CD005384. DOI: 10.1002/14651858.CD005384.pub2

72. Kirpalani H., Millar D., Lemyre B., Yoder B.A., Chiu A., Roberts R.S., et al. A trial comparing noninvasive ventilation strategies in preterm infants. N Engl JMed. 2013); 369: 611-20. DOI: 10.1056/NEJMoa1214533

73. Bourque S.L., Roberts R.S., Wright C.J., Kirpalani H., Lemyre B., Millar D., et al. Nasal intermittent positive pressure ventilation versus nasal continuous positive airway pressure to prevent primary noninvasive ventilation failure in extremely low birthweight infants. J Pediatr. 2019; 216: 218-21.e1. DOI: 10.1016/j.jpeds.2019.08.064

74. Lemyre B., Davis P.G., De Paoli A.G., Kirpalani H. Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for preterm neonates after extubation. Cochrane Database Syst Rev. 2017; 2: CD003212. DOI: 10.1002/14651858. CD003212.pub3

75. Fleeman N., Dundar Y., Shah P.S., Shaw B.N. Heated humidified high-flow nasal cannula for preterm infants: an updated systematic review and meta-analysis. J Technol Assess Health Care. 2019; 35: 298-306. DOI: 10.1017/S0266462319000424

76. Zivanovic S., Scrivens A., Panza R., Reynolds P., Laforgia N., Ives K.N., et al. Nasal high-flow therapy as primary respiratory support for preterm infants without the need for rescue with nasal continuous positive airway pressure. Neonatology. 2019; 115: 175-81. DOI: 10.1159/000492930

77. Wilkinson D., Andersen C., O’Donnell C.P., De Paoli A.G., Manley B.J. High flow nasal cannula for respiratory support in preterm infants. Cochrane Database Syst Rev. 2016; 2: CD006405. DOI: 10.1002/14651858. CD006405.pub3

78. Lavizzari A., Colnaghi M., Ciuffini F., Veneroni C., Musumeci S., Cortinovis I., et al. Heated, humidified high-flow nasal cannula vs nasal continuous positive airway pressure for respiratory distress syndrome of prematurity: a randomized clinical noninferiority trial. JAMA Pediatr. 2016. DOI: 10.1001/jamapediatrics.2016.1243

79. Roberts C.T., Owen L.S., Manley B.J., Fraisland D.H., Donath S.M., Dalziel K.M., et al. Nasal high-flow therapy for primary respiratory support in preterm infants. N Engl J Med. 2016; 375: 1142-51. DOI: 10.1056/ NEJMoa1603694

80. Shin J., Park K., Lee E.H., Choi B.M. Humidified high flow nasal cannula versus nasal continuous positive airway pressure as an initial respiratory support in preterm infants with respiratory distress: a randomized, controlled non-inferiority trial. J Korean Med Sci. 2017; 32: 650-5. DOI: 10.3346/jkms.2017.32.4.650

81. Manley B.J., Owen L.S., Doyle L.W., Andersen C.C., Cartwright D.W., Pritchard M.A., et al. High-flow nasal cannulae in very preterm infants after extubation. N Engl J Med. 2013; 369: 1425-33. DOI: 10.1056/ NEJMoa1300071

82. Schmidt B., Roberts R.S., Davis P., Doyle L.W., Barrington K.J., Ohlsson A., et al. Caffeine therapy for apnea of prematurity. N Engl J Med. 2006; 354: 2112-21. DOI: 10.1056/NEJMoa054065

83. Schmidt B., Roberts R.S., Davis P, Doyel L.W., Barrington K.J., Ohlsson A., et al. Long-term effects of caffeine therapy for apnea of prematurity. N Engl J Med. 2007; 357: 1893-902. DOI: 10.1056/NEJMoa 073679

84. Davis P.G., Schmidt B., Roberts R.S., Doyle L.W., Asztalos E., Haslam R., et al. Caffeine for apnea of prematurity trial: benefits may vary in subgroups. J Pediatr. 2010; 156: 382-7. DOI: 10.1016/j.jpeds.2009. 09.069

85. Pakvasa M.A., Saroha V., Patel R.M. Optimizing caffeine use and risk of bronchopulmonary dysplasia in preterm infants: a systematic review, meta-analysis, and application of grading of recommendations assessment, development, and evaluation methodology. Clin Perinatol. 2018; 45: 273-91. DOI: 10.1016/j.clp.2018.01.012

86. Patel R.M., Zimmerman K., Carlton D.P., Clark R., Benjamin D.K., Smith P.B. Early caffeine prophylaxis and risk of failure of initial continuous positive airway pressure in very low birth weight infants. J Pediatr. 2017; 190: 108-11 e101. DOI: 10.1016/j.jpeds.2017.07.006

87. Katheria A.C., Sauberan J.B., Akotia D., Rich W., Durham J., Finer N.N. A pilot randomized controlled trial of early versus routine caffeine in extremely premature infants. Am J Perinatol. 2015; 32: 879-86. DOI: 10.1055/s-0034-1543981

88. Doyle L.W., Carse E., Adams A.M., Ranganathan S., Opie G., Cheong J.L.Y., et al. Ventilation in extremely preterm infants and respiratory function at 8 years. N Engl J Med. 2017; 377: 329-37. DOI: 10.1056/ NEJMoa1700827

89. Keller R.L., Feng R., DeMauro S.B., Ferkol T., Hardie W., Rogers E.E., et al. Bronchopulmonary dysplasia and perinatal characteristics predict 1-year respiratory outcomes in newborns born at extremely low gestational age: a prospective cohort study. J Pediatr. 2017; 187: 89-97 e83. DOI: 10.1016/j.jpeds.2017.04.026

90. Stevens T.P., FinerN.N., Carlo W.A.,Szilagyi P.G., Phelps D.L., Walsh M.C., et al. Respiratory outcomes of the surfactant positive pressure and oximetry randomized trial (Support). J Pediatr. 2014; 165: 240-9 e244. DOI: 10.1016/j.jpeds.2014.02.054

91. Ren C.L., Feng R., Davis S.D., Eichenwald E., Jobe A., Moore P.E., et al. Tidal breathing measurements at discharge and clinical outcomes in extremely low gestational age neonates. Ann Am Thor Soc. 2018; 15: 1311-9. DOI: 10.1513/AnnalsATS.201802-112OC

92. Roehr C.C., Proquitte H., Hammer H., Wauer R.R., Morley C.J., Schmalisch G. Positive effects of early continuous positive airway pressure on pulmonary function in extremely premature infants: results of a subgroup analysis of the COIN trial. Arch Dis Child Fetal Neonatal Ed. 2011; 96: F371-3. DOI: 10.1136/adc.2009.181008

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Degtyarev Dmitriy Nikolaevich
Doctor of Medical Sciences, Professor, Deputy Director for Scientific Research of the V.I. Kulakov Obstetrics, Gynecology and Perinatology National Medical Research Center of Ministry of Healthсаre of the Russian Federation, Head of the Chair of Neonatology at the Clinical Institute of Children's Health named after N.F. Filatov, I.M. Sechenov First Moscow State Medical University, Chairman of the Ethics Committee of the Russian Society of Neonatologists, Moscow, Russian Federation

ORCID iD 0000-0001-8975-2425

Journals of «GEOTAR-Media»