Homeostasis of minerals and trace elements in newborns. Part 2. Clinical role of magnesium balance in the body of newborn


This review clarifies the distribution of magnesium in the body of newborns and infants, elucidates the main variants and clinical manifestations of magnesium imbalance in the newborn's body, describes the factors affecting magnesium homeostasis, particularly the metabolism and pharmacokinetics of magnesium, in newborns at different gestational ages; the methods of diagnosis, treatment and prevention of imbalances in magnesium homeostasis are considered. In the modern scientific literature information on this issue is scarce and often inconsistent. The review contains information available in open literature sources on the use of magnesium preparations and the clinical role of its different concentrations during pregnancy and childhood, methods of detection of magnesium imbalance, immediate and long-term consequences of hypo- and hypermagnesemia in infants. The practical importance of scientific data about the balance of magnesium in the newborn's body, methods of diagnosis and modes of treatment of the detected disorders are highlighted.

Keywords:newborn, magnesium, hypomagnesiemia, hypermagnesiemia, neuroprotection, tocolysis

Funding. The study had no sponsor support.

Conflict of interests. The authors declare no conflict of interests.

Contribution. The contribution of the authors of the article was equal and consisted in collecting information, analyzing it and preparing the article for publication.

Acknowledgement. The authors are grateful to Daria S. Kryuchko, MD, PhD, DSc, for her assistance in preparing the material for publication.

For citation: Degtyareva M.V., Senkevich O.A., Karpova A.L., Karpov N.Yu. Homeostasis of minerals and trace elements in newborns. Part 2. Clinical role of magnesium balance in the body of newborn. Neonatologiya: novosti, mneniya, obuchenie [Neonatology: News, Opinions, Training]. 2020; 8 (1): 22-33. doi: 10.33029/2308-2402-2020-8-1-22-33 (in Russian)


1. Lingam I., Robertson N.J. Magnesium as a neuroprotective agent: a review of its use in the fetus, term infant with neonatal encephalopathy, and the adult stroke patient. Dev Neurosci 2018; 40: 1-12. URL: https://doi.org/10.1159/000484891 .

2. Jahnen-Dechent W., Ketteler M. Magnesium basics. Clin Kidney J. 2012; 5 (suppl 1): i3–i14.

3. Barashkov G.K. Medical bioenergetica. Basics, analytics, clinic. Moscow: BINOM, 2011. 512 p. (in Russian)

4. NICE: Hypertension in pregnancy: diagnosis and management. NICE Guidelines (CG107). 2011. URL: https://www.nice.org.uk/guidance/CG107 .

5. Degtyareva M.V., Senkevich O.A., Karpova A.L., Jacota D.A. Exchange of chemical elements in newborns. Part 1. Distribution of magnesium in the body. Neonatologiya: novosti, mneniya, obuchenie [Neonatology: News, Opinions, Training]. 2019; 7 (3): 59-65. (in Russian)

6. Elin R.J. Assessment of magnesium status. Clin Chem. 1987; 33 (11): 1965-70.

7. Walser M. Magnesium metabolism. Rev Physiol Biochem Exp Pharmacol. 1967; 59: 185-341.

8. Elin R.J., Hosseini J.M. Magnesium content of mononuclear blood cells. Clin Chem. 1985; 31: 377-80.

9. Elin R.J., Johnson E. A method for the determination of the magnesium content of blood mononuclear cells. Magnesium. 1982; 1: 115-21.

10. Millart H., Collery P., Lamiable D., et al. The determination of lymphocyte magnesium content as a reliable laboratory test with regard to magnesium status. J Am Coll Nutr. 1985; 4: 397.

11. Erickson M.M., Poklis A., Gantner G.E., Dickinson A.W., Hillman L.S. Tissue mineral levels in victims of sudden infant death syndrome II. Essential minerals: copper, zinc, calcium, and magnesium. Pediatr Res. 1983; 17 (10): 784-7.

12. Lapin C.A., Morrow G., Chvapil M., Belke D.P., Fisher R.S. Hepatic trace elements in the sudden infant death syndrome. J Pediatr. 1976; 89: 607-8.

13. Raie R.M., Smith H. Trace element deficiency and cot deaths. Med Sci Law. 1981; 21 (1): 41-6.

14. Steele R.J., Fogerty A.C., Willcox M.E., Clancy S.L. Metal content of the liver in sudden infant death syndrome. J Paediatr Child Health. 1984; 20 (2): 141-2.

15. Mortom A. Hypomagnesaemia and pregnancy. Obstet Med. 2018; 11: 67-72.

16. Dikke G.B. Myths and facts of magnesium use in obstetric practice. Akusherstvo, ginekologiya i reproduktsiya [Obstetrics, gynecology and reproduction]. 2017; 11 (3): 59-68. (in Russian)

17. Spatling L., Spatling G. Magnesium supplementation in pregnancy: a double-blind study. Br J Obstet Gynaecol. 1988; 95: 120-5.

18. Makrides M., Crosby D.D., Shefherd E., Crowther C.A. Magnesium supplementation in pregnancy. Cochrane Database Syst Rev. 2014; 4: CD000937. DOI: 10.1002/14651858.CD000937.pub2.

19. Premature birth. Clinical recommendations (Protocol). Moscow, 2013: 21 p (in Russian).

20. Crowther C.A., Brown J., McKinlay C.J.D., Middleton P. Magnesium sulphate for preventing preterm birth in threatened preterm labour. Cochrane Database Syst. Rev. 2014; 8: CD001060. DOI: 10.1002/14651858.CD001060.pub2.

21. Preterm birth. In: F.G. Cunningham, K.J. Leveno, S.L. Bloom, J.S. Dashe, B.L. Hoffman, B.M. Casey, et al. (eds). Williams Obstetrics. 25th ed. New York: McGraw-Hill Education, 2018: 824.

22. Watt-Morse M.L., Caritis S.N., Kridgen P.L. Magnesium sulfate is a poor inhibitor of oxytocin-induced contractility in pregnant sheep. J Matern Fetal Med. 1995; 4: 139-48.

23. Steer C.M., Petrie R.H. A comparison of magnesium sulfate and alcohol for the prevention of premature labor. Am J Obstet Gynecol. 1977; 129: 1-4.

24. McCubbin J.M., Sibai B.M., Ardella T.N., Anderson G.D. Cardiopulmonary arrest due to acute maternal hypermagnesaemia. Lancet. 1981; 1 (8228): 1058.

25. Morisaki H., Yamamoto S., Morita Y., Kotake Y., Ochiai R., Takeda J. Hypermagnesemia-induced cardiopulmonary arrest before induction of anesthesia for emergency cesarean section. J Clin Anesth. 2000; 12: 224-6.

26. Samol J.M., Lambers D.S. Magnesium sulfate tocolysis and pulmonary edema: the drug or the vehicle? Am J Obstet Gynecol. 2005; 192: 1430-2.

27. Preeclampsia. In: F.G. Cunningham, K.J. Leveno, S.L. Bloom, J.S. Dashe, B.L. Hoffman, B.M. Casey, et al. (eds). Williams Obstetrics. 25th ed. New York: McGraw-Hill Education, 2018: 737.

28. Stone S.R., Pritchard J.A. Effect of maternally administered magnesium sulfate on the neonate. Obstet Gynecol. 1970; 35: 574-7.

29. Heinonen O.P., Slone D., Shapiro S. Birth Defects and Drugs in Pregnancy. Littleton, MA: Publishing Sciences Group, 1977: 440 p.

30. Mittendorf R., Dambrosia J., Dammann O., Pryde P.G., Lee K-S., Ben-Ami T.E., Yousefzadeb D. Association between maternal serum ionized magnesium levels at delivery and neonatal intraventricular hemorrhage. J Pediatr. 2002; 140: 540-6.

31. Chesley L.C., Tepper I. Plasma levels of magnesium attained in magnesium sulfate therapy for preeclampsia and eclampsia. Surg Clin North Am. 1957; 37: 353-67.

32. Dangman B.C., Rosen T.S. Magnesium levels in infants of mothers treated with MgSO4 (abstract 262). Pediatr. Res. 1977; 11: 415.

33. Cruikshank D.P., Pitkin R.M., Reynolds W.A., Williams G.A., Hargis G.K. Effects of magnesium sulfate treatment on perinatal calcium metabolism I. Maternal and fetal responses. Am J Obstet Gynecol. 1979; 134: 243-9.

34. Donovan E.F., Tsang R.C., Steichen J.J., Strub R.J., Chen I.W., Chen M. Neonatal hypermagnesemia: effect on parathyroid hormone and calcium homeostasis. J Pediatr. 1980; 96: 305-10.

35. Stone S.R., Pritchard J.A. Effect of maternally administered magnesium sulfate on the neonate. Obstet Gynecol. 1970; 35: 574-7.

36. Pruett K.M., Kirshon B., Cotton D.B., Adam K., Doody K.J. The effects of magnesium sulfate therapy on Apgar scores. Am J Obstet Gynecol. 1988; 159: 1047-8.

37. Lipsitz P.J., English I.C. Hypermagnesemia in the newborn infant. Pediatrics. 1967; 40: 856-62.

38. Lipsitz PJ. The clinical and biochemical effects of excess magnesium in the newborn. Pediatrics. 1971; 47: 501-9.

39. Lamm C.I., Norton K.I., Murphy R.J.C., Wilkins I.A., Rabinowitz J.G. Congenital rickets associated with magnesium sulfate infusion for tocolysis. J Pediatr. 1988; 113: 1078-82.

40. Wilkins I.A., Goldberg J.D., Phillips R.N., Bacall C.J., Chervenak F.A., Berkowitz R.L. Long-term use of magnesium sulfate as a tocolytic agent. Obstet Gynecol. 1986; 67: 38-40.

41. Dudley D., Gagnon D., Varner M. Long-term tocolysis with intravenous magnesium sulfate. Obstet Gynecol. 1989; 73: 373-8.

42. Berghella V. Preterm labor. In: J.T. Queenan, C.Y. Spong, C.J. (eds). Protocols for High-Risk Pregnancies. An Evidence-Based Approach. 6th ed. Lockwood: Willey-Blackwell, 2015: 363-8.

43. Alexandrovich Yu.S., Pshenisnov K.V. Intensive care of newborns: A guide for physicians. Saint Petersburg: Izdatel’stvo N-L, 2013: 672 p. (in Russian)

44. Anesthesiology and intensive care in pediatrics: The textbook. 3rd ed., correct. and suppl. In: V.A. Mikhel’son, V.A. Grebennikov. Moscow : Medpress-inform, 2009: 512 p. (in Russian)

45. Neonatology: National guide. In: N.N. Volodin. Moscow: GEOTAR-Media, 2007: 848 p. (Series «National guidelines»). (in Russian)

46. Manual of Perinatology. In: D.O. Ivanov (ed.). Saint Petersburg: Inform-Navigator, 2015. Chapter 30. «Violations of magnesium metabolism»: 646-60. (in Russian)

47. Federal guide to the use of medicines (formulary system). In: A.G. Chuchalin (ed.). Moscow, 2017. Issue XVIII. Chapter 14. «Neonatology». (in Russian)

48. Sugimoto J., Romani A.M., Valentin-Torres A.M., Luciano A.A., Ramirez Kitchen C.M., Funderburg N., et al. Magnesium decreases inflammatory cytokine production: a novel innate immunomodulatory mechanism. J Immunol. 2012; 188: 6338-46.

49. Kamyar M., Manuck T.A., Stoddard G.J., Varner M.W., Clark E.A.S. Magnesium sulfate, chorioamnionitis, and neurodevelopment after preterm birth. BJOG. 2016; 123: 1161-6.

50. Nelson K.B., Grether J.K. Can magnesium sulfate reduce the risk of cerebral palsy in very low birthweight infants? Pediatrics. 1995; 95: 263-9.

51. Schendel D.E., Berg C.J., Yeargin-Allsopp M., Boyle C.A., Decoufle P. Prenatal magnesium sulfate exposure and the risk for cerebral palsy or mental retardation among very low-birth-weight children aged 3 to 5 years. JAMA. 1996; 276: 1805-10.

52. Shepherd E., Salam R.A., Middleton P., Makrides M., McIntyre S., Badawi N., et al. Antenatal and intrapartum interventions for preventing cerebral palsy: an overview of Cochrane systematic reviews. Cochrane Database Syst Rev. 2017; 8: CD012077. DOI: 10.1002/14651858.CD012077.pub2.

53. Arango M.F., Bainbridge D. Magnesium for acute traumatic brain injury. Cochrane Database Syst Rev. 2008; 4: CD005400. DOI: 10.1002/14651858.CD005400.pub3.

54. Wang L.C., Huang C.Y., Wang H.K., Wu M.H., Tsai K.J. Magnesium sulfate and nimesulide have synergistic effects on rescuing brain damage after transient focal ischemia. J Neurotrauma. 2012; 29: 1518-29.

55. Doyle L.W., Anderson PJ., Haslam R., Lee K.J., Crowther C. School-age outcomes of very preterm infants after antenatal treatment with magnesium sulfate versus placebo. JAMA. 2014; 312: 1105-13.

56. Chollat C., Enser M., Houivet E., Provost D., Benichou J., Mar-peau L., et al. School-age outcomes following a randomized controlled trial of magnesium sulfate for neuroprotection of preterm infants. J Pediatr. 2014; 165: 398-400.

57. Zeng X., Xue Y., Tian Q., Sun R., An R. Effects and safety of magnesium sulfate on neuroprotection: a meta-analysis based on PRISMA guidelines. Medicine (Baltimore). 2016; 95: e2451.

58. National Institute for Health and Care Excellence: preterm labour and birth. NICE Guideline 2015. URL: https://www.nice.org.uk/ng25 .

59. Zadvornov A.A., Golomidov A.V., Grigoriev E.V. Drug-induced neuroprotection in full-term newborns with severe cerebral ischemia. Vestnik anesteziologii i reanimatologii [Bulletin of Anesthesiology and Resuscitation]. 2016; 13 (3): 51-62. (in Russian)

60. Tseilikman V.E., Popova A.S., Krupitskaya L.I., Sinitskiy A.I. Activity of platelet monoamine oxidase, MG-ATPase of erythrocytes and the content of magnesium in blood serum in newborns in the acute period of adaptation. Klinicheskaya laboratornaya diagnostika [Clinical Laboratory Diagnostics]. 2010; (5): 14-6. (in Russian)

61. Levene M., Blennow M., Whitelaw A., Hanko E., Fellman V., Hartley R. Acute effects of two different doses of magnesium sulphate in infants with birth asphyxia. Arch Dis Child Fetal Neonatal Ed. 1995; 73: 174 - 7.

62. Ichiba H., Tamai H., Negishi H., Ueda T., Kim T.J., Sumida Y., et al. Randomized controlled trial of magnesium sulfate infusion for severe birth asphyxia. Pediatr Int. 2002; 44: 505-9.

63. Gathwala G., Khera A., Singh J., Balhara B. Magnesium for neuroprotection in birth asphyxia. J Pediatr Neurosci. 2010; 5: 102-4.

64. Rahman S.U., Canpolat F.E., Oncel M.Y., Evli A., Dilmen U., Parappil H., et al: Multicenter randomized controlled trial of therapeutic hypothermia plus magnesium sulfate versus therapeutic hypothermia plus placebo in the management of term and near-term infants with hypoxic ischemic encephalopathy (the Mag Cool study): a pilot study. J Clin Neonatol. 2015; 4: 158-63.

65. Tagin M., Shah P.S., Lee K.-S. Magnesium for newborns with hypoxic-ischemic encephalopathy: a systematic review and meta-analysis. J Perinatol. 2013; 33: 663-9.

66. Ryan M.F. The role of Mg in clinical biochemistry: an overview. Ann Clin Biochem. 1991; 28: 19-26.

67. Tsang R.C. Neonatal magnesium disturbances. Am J Dis Child. 1972; 124: 282-93.

68. Handwerker S.M., Altura B.T., Royo B., et al. Ionized serum magnesium levels in umbilical cord blood of normal pregnant women at delivery: relationship to calcium, demographics, and birth weight. Am J Perinatol. 1993; 10: 392-7.

69. Namgung R., Tsang R.C., Specker B.L., et al. Reduced serum osteocalcin and 1,25-dihydroxyvitamin D concentrations and low bone mineral content in small for gestational age infants: evidence of decreased bone formation rates. J Pediatr. 1993; 122: 269-75.

70. Bagnoli F., Bruchi S., Garasi G., et al. Relationship between mode of delivery and neonatal calcium homeostasis. Eur J Pediatr. 1990; 149: 800-3.

71. Atkinson S.A., Radde I.C., Anderson G.H., et al. Macromineral balances in premature infants fed their own mothers’ milk or formula. J Pe-diatr. 1983; 102: 99-106.

72. Rigo J., Pieltain C., Christmann V., Bonsante F., Moltu S.J., Iacobelli S., et al. Serum magnesium levels in preterm infants are higher than adult levels: a systematic literature review and meta-analysis. Nutrients. 2017; 9: E1125.

73. Walsh W.F., Butler D., Schmidt J.W. Report of a pilot study of cooling four preterm infants 32-35 weeks gestation with HIE. J Neonatal Perinatal Med. 2015; 8: 47-51.

74. Marcus J.C., Valencia G.B., Altura B.T., Cracco R.Q., Jean-Baptiste D., Sinha K., et al. Serum ionized magnesium in premature and term infants. Pediatr Neurol. 1998; 18: 311-4.

75. Chekman I.S., Gorchakova N.A., Nikolay S.L. Magnesium in medicine.- Kishinev, 1992: 101 p. (in Russian)

76. Shabalov N.P. Neonatology: Textbook for medical students: in 2 vols. 4th ed., correct. and suppl. Moscow: Medpress-inform, 2006. Vol. I: 607 p. (in Russian)

77. Simon D.B., Lu Y., Choate K.A., et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+resorption. Science. 1999; 285: 103-6.

78. Konrad M., Schaller A., Seelow D., et al. Mutations in the tight-junction gene claudin-19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet. 2006; 79: 949-57.

79. Weber S., Schneider L., Peters M., et al. Novel paracellin-1 mutat ions in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol. 2001; 12: 1872-81.

80. Gromova O.A., Skoromets A.N., Egorova E.Yu., Torshin I.Yu., Fedotova L.E., Yudina N.V. Prospects of magnesium application in pediatrics and pediatric neurology. Pediatriya. Zhurnal im. G.N. Speranskogo [Pediatrics Journal named after G.N. Speranskiy]. 2010; 89 (5): 142-9. (in Russian)

Degtyarev Dmitriy Nikolaevich
Doctor of Medical Sciences, Professor, Deputy Director for Scientific Research of the V.I. Kulakov Obstetrics, Gynecology and Perinatology National Medical Research Center of Ministry of Healthсаre of the Russian Federation, Head of the Chair of Neonatology at the Clinical Institute of Children's Health named after N.F. Filatov, I.M. Sechenov First Moscow State Medical University, Chairman of the Ethics Committee of the Russian Society of Neonatologists, Moscow, Russian Federation

ORCID iD 0000-0001-8975-2425
Medicine today

Уважаемые коллеги! Представляем оргкомитет 17-го Национального конгресса терапевтов (с международным участием) , который состоится 12-14 октября в МВЦ "Крокус Экспо" (павильон 3, Зал 20, г. Москва). · Президент Российского научного медицинского общества терапевтов,...

IV Съезд онкологов Московской области 7 октября 2022 года Активное развитие онкологической службы позволяет эффективно решать проблемы, возникающие на всех уровнях оказания помощи пациентам с онкозаболеваниями. Одним из успешных примеров такого взаимодействия является IV...

II Всероссийская конференция с международным участием "Воспаление глаза" 12 ноября 2022 года, Москва Воспалительные заболевания глаза - широко распространенная и многогранная проблема, с которой может столкнуться в своей практике любой специалист. Найти оптимальные алгоритмы...

Journals of «GEOTAR-Media»