Optimizing hemodynamic care in neonatal encephalopathy

Abstract

Hemodynamic impairment occurs in up to 80% of infants with neonatal encephalopathy (NE). Not all infants benefit from therapeutic hypothermia (HT); there are some indications that the trajectory of brain injury might be modified by neurologic monitoring and early management over the first 72-h period. It is also possible that optimizing hemodynamic management may further improve outomes. The coupling between cerebral blood flow and cerebral metabolism is disrupted in NE, increasing the vulnerability of the newborn brain to secondary injury. Hemodynamic monitoring is usually limited to blood pressure and functional echocardiographic measurements, which may not accurately reflect brain perfusion. This review explores the evidence base for hemodynamic assessment and management of infants with NE while undergoing HT. We discuss the literature behind a systematic approach to a baby with NE with the aim to define best therapies to optimize brain perfusion and reduce secondary injury.

Keywords:neonatal encephalopathy, cerebral autoregulation, cerebral blood flow, cardiovascular supportive therapies, therapeutic hypothermia, near infrared spectroscopy (NIRS)

Pang R., Mintoft A., Crowley R., Sellwood M., Mitra S., Robertson N.J. Optimizing hemodynamic care in neonatal encephalopathy. Semin Fetal Neonatal Med. 2020; 25 (5): 101139.

DOI: https://doi.org/10.1016/j.siny.2020.101139

PMID: 33223016

References

1. Gale C., Statnikov Y., Jawad S., Uthaya S., Modi N.; on behalf of the Brain Injuries Expert Working Group. Neonatal brain injuries in England: population-based incidence derived from routinely recorded clinical data held in the National Neonatal Research Database. Arch Dis Child Fetal Neonatal Ed. 2018; 103: F301–6.

2. Lee A., Kozuki N., Blencowe H., Vos T., Bahalim A., Darmstadt G., et al. Intrapartum-related neonatal encephalopathy incidence and impairment at regional and global levels for 2010 with trends from 1990. Pediatr Res. 2013; 74: 50–72.

3. Roychoudhury S., Esser M.J., Buchhalter J., Bello-Espinosa L., Zein H., Howlett A., et al. Implementation of neonatal neurocritical care program improved short-term outcomes in neonates with moderate-to-severe hypoxic ischemic encephalopathy. Pediatr Neurol. 2019: 101: 64–70.

4. Azzopardi D., Strohm B., Edwards A., Dyet L., Halliday H., Juszczak E., et al. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med. 2009; 361: 1349–58.

5. Armstrong K., Franklin O., Sweetman D., Molloy E. Cardiovascular dysfunction in infants with neonatal encephalopathy. Arch Dis Child. 2012; 97: 372–5.

6. Jary S., Lee-Kelland R., Tonks J., Cowan F., Thoresen M., Chakkarapani E. Motor performance and cognitive correlates in children cooled for neonatal encephalopathy without cerebral palsy at school age. Acta Paediatr. 2019; 108: 1773–80.

7. Lee-Kelland R., Jary S., Tonks J., Cowan F., Thoresen M., Chakkarapani E. School-age outcomes of children without cerebral palsy cooled for neonatal hypoxic-ischaemic encephalopathy in 2008-2010. Arch Dis Child Fetal Neonatal Ed. 2020; 105: 8-13.

8. Popescu M.R., Panaitescu A.M., Pavel B., Zagrean L., Peltecu G., Zagrean A.M. Getting an early start in understanding perinatal asphyxia impact on the cardiovascular system. Front Pediatr. 2020; 8: 68.

9. Lakshminrusimha S., Shankaran S., Laptook A., McDonald S., Keszler M., Van Meurs K., et al. Pulmonary hypertension associated with hypoxic-ischemic encephalopathy-antecedent characteristics and comorbidities. J Pediatr. 2018; 196: 45-51.e3.

10. Aggarwal S., Natarajan G. Biventricular function on early echocardiograms in neonatal hypoxic-ischaemic encephalopathy. Acta Paediatr. 2017; 106: 1085-90.

11. Mitra S., Bale G., Meek J., Tachtsidis I., Robertson N.J. Cerebral near infrared spectroscopy monitoring in term infants with hypoxic ischemic encephalopathy - a systematic review. Front Neurol. 2020; 11: 393.

12. Noori S., Wlodaver A., Gottipati V., McCoy M., Schultz D., Escobedo M. Transitional changes in cardiac and cerebral hemodynamics in term neonates at birth. J Pediatr. 2012; 160: 943-8.

13. Rhee C.J., da Costa C.S., Austin T., Brady K.M., Czosnyka M., Lee J.K. Neonatal cerebrovascular autoregulation. Pediatr Res. 2018; 84: 602-10.

14. Giesinger R.E., El Shahed A.I., Castaldo M.P., Breatnach C.R., Chau V., Whyte H.E., et al. Impaired right ventricular performance is associated with adverse outcome after hypoxic ischemic encephalopathy. Am J Respir Crit Care Med. 2019; 200: 1294-305.

15. Giesinger R.E., Bailey L.J., Deshpande P., McNamara PJ. Hypoxic-ischemic encephalopathy and therapeutic hypothermia: the hemodynamic perspective. J Pediatr. 2017; 180: 22-30.e2.

16. Volpe J.J., Inder T.E., Darras B.T., de Vries L.S., du Plessis A.J., Neil J.J., et al. Volpe’s Neurology of the Newborn. Elsevier, 2018.

17. Greisen G. Autoregulation of cerebral blood flow in newborn babies. Early Hum Dev. 2005; 81: 423-8.

18. Wintermark P., Moessinger A.C., Gudinchet F., Meuli R. Perfusion-weighted magnetic resonance imaging patterns of hypoxic-ischemic encephalopathy in term neonates. J Magn Reson Imag. 2008; 28: 1019-25.

19. Wintermark P., Hansen A., Gregas M.C., Soul J., Labrecque M., Robertson R.L., et al. Brain perfusion in asphyxiated newborns treated with therapeutic hypothermia. AJNR Am J Neuroradiol. 2011; 32: 2023-9.

20. Hyttel-Sorensen S., Pellicer A., Alderliesten T., Austin T., van Bel F., Benders M., et al. Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase II randomised clinical trial. BMJ. 2015; 350: g7635.

21. Massaro A.N., Govindan R.B., Vezina G., Chang T., Andesca-vage N.N., Wang Y., et al. Impaired cerebral autoregulation and brain injury in newborns with hypoxic-ischemic encephalopathy treated with hypothermia. J Neurophysiol. 2015; 114: 818-24.

22. Howlett J.A., Northington F.J., Gilmore M.M., Tekes A., Huis-man T.A., Parkinson C., et al. Cerebrovascular autoregulation and neurologic injury in neonatal hypoxic-ischemic encephalopathy. Pediatr Res. 2013; 74: 525-35.

23. Burton V.J., Gerner G., Cristofalo E., Chung S.E., Jennings J.M., Parkinson C., et al. A pilot cohort study of cerebral autoregulation and 2-year neurodevelopmental outcomes in neonates with hypoxic-ischemic encephalopathy who received therapeutic hypothermia. BMC Neurol. 2015; 15: 209.

24. Lee J.K., Poretti A., Perin J., Huisman T., Parkinson C., Chavez-Valdez R., et al. Optimizing cerebral autoregulation may decrease neonatal regional hypoxic-ischemic brain injury. Dev Neurosci. 2017; 39: 248-56.

25. Abelian A., Mund T., Curran M.D., Savill S.A., Mitra N., Charan C., et al. Towards accurate exclusion of neonatal bacterial meningitis: a feasibility study of a novel 16S rDNA PCR assay. BMC Infect Dis. 2020; 20: 441.

26. Peng S., Boudes E., Tan X., Saint-Martin C., Shevell M., Winter-mark P. Does near-infrared spectroscopy identify asphyxiated newborns at risk of developing brain injury during hypothermia treatment? Am J Peri-natol. 2015; 32: 555-64.

27. Lemmers P.M., Zwanenburg R.J., Benders M.J., de Vries L.S., Groenendaal F., van Bel F., et al. Cerebral oxygenation and brain activity after perinatal asphyxia: does hypothermia change their prognostic value? Pediatr Res. 2013; 74: 180-5.

28. Mitra S., Kendall G.S., Bainbridge A., Sokolska M., Dinan M., Uria-Avellanal C., et al. Proton magnetic resonance spectroscopy lactate/N-acetylaspartate within 2 weeks of birth accurately predicts 2-year motor, cognitive and language outcomes in neonatal encephalopathy after therapeutic hypothermia. Arch Dis Child Fetal Neonatal Ed. 2019; 104: F424-32.

29. Shah P., Riphagen S., Beyene J., Perlman M. Multiorgan dysfunction in infants with post-asphyxial hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed. 2004; 89: F152-5.

30. Jedeikin R., Primhak A., Shennan A.T., Swyer P.R., Rowe R.D. Serial electrocardiographic changes in healthy and stressed neonates. Arch Dis Child. 1983; 58: 605-11.

31. DiSessa T.G., Leitner M., Ti C.C., Gluck L., Coen R., Friedman W.F. The cardiovascular effects of dopamine in the severely asphyxiated neonate. J Pediatr. 1981; 99: 772-6.

32. Mohammad K. Hemodynamic instability associated with increased risk of death or brain injury in neonates with hypoxic ischemic encephalopathy. J Neonatal Perinat Med. 2016; 9: 357-62.

33. Al Balushi A., Barbosa Vargas S., Maluorni J., Sanon P.N., Ram-pakakis E., Saint-Martin C., et al. Hypotension and brain injury in asphyxiated newborns treated with hypothermia. Am J Perinatol. 2018; 35: 31-8.

34. Bashir R.A., Vayalthrikkovil S., Espinoza L., Irvine L., Scott J., Mohammad K. Prevalence and characteristics of intracranial hemorrhages in neonates with hypoxic ischemic encephalopathy. Am J Perinatol. 2018; 35: 676-81.

35. Liu L., Yenari M. Therapeutic hypothermia: neuroprotective mechanisms. Front Biosci. 2007; 12: 816-25.

36. Liu X., Tooley J., Loberg E.M., Suleiman M.S., Thoresen M. Immediate hypothermia reduces cardiac troponin I after hypoxic-ischemic encephalopathy in newborn pigs. Pediatr Res. 2011; 70: 352-6.

37. More K.S., Sakhuja P., Giesinger R.E., Ting J.Y., Keyzers M., Sheth J.N., et al. Cardiovascular associations with abnormal brain magnetic resonance imaging in neonates with hypoxic ischemic encephalopathy undergoing therapeutic hypothermia and rewarming. Am J Perinatol. 2018; 35 (10): 979-89.

38. Joynt C., Cheung P.Y. Cardiovascular supportive therapies for neonates with asphyxia - a literature review of pre-clinical and clinical studies. Front Pediatr. 2018; 6: 363.

39. Benumof J.L., Wahrenbrock E.A. Dependency of hypoxic pulmonary vasoconstriction on temperature. J Appl Physiol Respir Environ Exerc Physiol. 1977; 42: 56-8.

40. Jacobs S.E., Berg M., Hunt R., Tarnow-Mordi W.O., Inder T.E., Davis P.G. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev. 2013; 1: CD003311.

41. Gagnon M.H., Wintermark P. Effect of persistent pulmonary hypertension on brain oxygenation in asphyxiated term newborns treated with hypothermia. J Matern Fetal Neonatal Med. 2016; 29: 2049-55.

42. Jain A., McNamara PJ. Persistent pulmonary hypertension of the newborn: advances in diagnosis and treatment. Semin Fetal Neonatal Med. 2015; 20 (4): 262-71.

43. Hochwald O., Jabr M., Osiovich H., Miller S.P., McNamara PJ., Lavoie P.M. Preferential cephalic redistribution of left ventricular cardiac output during therapeutic hypothermia for perinatal hypoxic-ischemic encephalopathy. J Pediatr. 2014; 164: 999-1004.e1.

44. Kumagai T., Higuchi R., Higa A., Tsuno Y., Hiramatsu C., Sugimoto T., et al. Correlation between echocardiographic superior vena cava flow and short-term outcome in infants with asphyxia. Early Hum Dev. 2013; 89: 307-10.

45. Wu T.W., Tamrazi B., Soleymani S., Seri I., Noori S. Hemodynamic changes during rewarming phase of whole-body hypothermia therapy in neonates with hypoxic-ischemic encephalopathy. J Pediatr. 2018; 197: 68-74.

46. Shah S.K., Khan A.M., Cox C.S. Jr. Pulmonary hypertensive crisis requiring ECMO associated with re-warming from whole body hypothermia for hypoxic ischemic encephalopathy: clinical observations from a case series. Eur J Pediatr Surg. 2010; 20: 205-6.

47. Dempsey E., Rabe H. The use of cardiotonic drugs in neonates. Clin Perinatol. 2019; 46 (2): 273-90.

48. Gupta S., Singh Y. Hemodynamics in the asphyxiated neonate and effects of therapeutic hypothermia. 2018: 503-20.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Degtyarev Dmitriy Nikolaevich
Doctor of Medical Sciences, Professor, Deputy Director for Scientific Research of the V.I. Kulakov Obstetrics, Gynecology and Perinatology National Medical Research Center of Ministry of Healthсаre of the Russian Federation, Head of the Chair of Neonatology at the Clinical Institute of Children's Health named after N.F. Filatov, I.M. Sechenov First Moscow State Medical University, Chairman of the Ethics Committee of the Russian Society of Neonatologists, Moscow, Russian Federation

ORCID iD 0000-0001-8975-2425

Journals of «GEOTAR-Media»