Effect of therapeutic hypothermia on renal and myocardial function in asphyxiated (near) term neonates: a systematic review and meta-analysis

Abstract

Therapeutic hypothermia (TH) is a well-established neuroprotective therapy applied in (near) term asphyxiated infants. However, little is known regarding the effects of TH on renal and/or myocardial function.

Objectives. To describe the short- and long-term effects of TH on renal and myocardial function in asphyxiated (near) term neonates.

Methods. An electronic search strategy incorporating MeSH terms and keywords was performed in October 2019 and updated in June 2020 using PubMed and Cochrane databases. Inclusion criteria consisted of a RCT or observational cohort design, intervention with TH in a setting of perinatal asphyxia and available long-term results on renal and myocardial function. We performed a meta-analysis and heterogeneity and sensitivity analyses using a random effects model. Subgroup analysis was performed on the method of cooling.

Results. Of the 107 studies identified on renal function, 9 were included. None of the studies investigated the effects of TH on long-term renal function after perinatal asphyxia. The 9 included studies described the effect of TH on the incidence of acute kidney injury (AKI) after perinatal asphyxia. Meta-analysis showed a significant difference between the incidence of AKI in neonates treated with TH compared to the control group (RR=0.81; 95% CI 0.67-0.98; p=0.03). No studies were found investigating the long-term effects of TH on myocardial function after neonatal asphyxia. Possible short-term beneficial effects were presented in 4 out of 5 identified studies, as observed by significant reductions in cardiac biomarkers and less findings of myocardial dysfunction on ECG and cardiac ultrasound.

Conclusions. TH in asphyxiated neonates reduces the incidence of AKI, an important risk factor for chronic kidney damage, and thus is potentially renoprotective. No studies were found on the long-term effects of TH on myocardial function. Short-term outcome studies suggest a cardioprotective effect.

van Wincoop M., de Bijl-Marcus K., Lilien M., van den Hoogen A., Groenendaal F. Effect of therapeutic hypothermia on renal and myocardial function in asphyxiated (near) term neonates:

A systematic review and meta-analysis. PLoS ONE. 2021; 16 (2): e0247403.

DOI: https://doi.org/10.1371/journal.pone.0247403

ЛИТЕРАТУРА/REFERENCES

1. Groenendaal F., Casaer A., Dijkman K.P., Gavilanes A.W.D., de Haan T.R., ter Horst H.J., et al. Introduction of hypothermia for neonates with perinatal asphyxia in the Netherlands and Flanders. Neonatology. 2013; 104 (1): 15-21. DOI: https://doi.org/10.1159/000348823 PMID: 23615314.

2. Polglase G.R., Ong T., Hillman N.H. Cardiovascular alterations and multiorgan dysfunction after birth asphyxia. Clin Perinatol. 2016; 43 (3): 469-83. DOI: https://doi.org/10.1016/j.clp.2016.04.006 PMID: 27524448.

3. Giannakis S., Ruhfus M., Rudiger M., Sabir H.; German Neonatal Hypothermia Network. Hospital survey showed wide variations in therapeutic hypothermia for neonates in Germany. Acta Paediatr. 2019; 109 (1): 200-1. DOI: https://doi.org/10.1111/apa.14979 PMID: 31432551.

4. Cornette L. Therapeutic hypothermia in neonatal asphyxia. Facts Views Vis ObGyn. 2012; 4 (2): 133-9. PMID: 24753900.

5. Roka A., Vasarhelyi B., Bodrogi E., Machay T., Szabo M. Changes in laboratory parameters indicating cell necrosis and organ dysfunction in asphyxiated neonates on moderate systemic hypothermia. Acta Paediatr. 2007; 96 (8): 1118-21. DOI: https://doi.org/10.1111/j1651-2227.2007.00361.x PMID: 17590199.

6. LaRosa D.A., Ellery S.J., Walker D.W., Dickinson H. Understanding the full spectrum of organ injury following intrapartum asphyxia. Front Pe-diatr. 2017; 5: 16. DOI: https://doi.org/10.3389/fped.2017.00016 PMID: 28261573.

7. Higgins J.P.T., Thomas J., Chandler J., Cumpston M., Li T., Page M.J., et al. (eds). Cochrane Handbook for Systematic Reviews of Interventions version 6.0 (updated July 2019). Cochrane, 2019. URL: www.training.co-chrane.org/handbook

8. National Heart, Lung, and Blood Institute. Study Quality Assessment Tools. Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. [Internet]. URL: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools

9. Review Manager (RevMan) [Computer program]. Version 5.3. Copenhagen : The Nordic Cochrane Centre, The Cochrane Collaboration, 2014.

10. Borenstein M., Hedges L.V., Higgins J.P.T., Rothstein H.R. Identifying and Quantifying Heterogeneity. Introduction to Meta-Analysis. 2009: 107-25.

11. Levey A.S., Eckardt K.-U., Tsukamoto Y., Levin A., Coresh J., Ros-sert J., et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2005; 67 (6): 2089-100. DOI: https://doi.org/10.1111/j1523-1755.2005.00365.x PMID: 15882252.

12. Guillet R., Edwards A.D., Thoresen M., Ferriero D.M., Gluckman P.D., Whitelaw A., et al. Seven- to eight-year follow-up of the CoolCap trial of head cooling for neonatal encephalopathy. Pediatr Res. 2012; 71 (2): 205-9. DOI: https://doi.org/10.1038/pr.2011.30 PMID: 22258133.

13. Shankaran S., Pappas A., McDonald S.A., Vohr B.R., Hintz S.R., Yolton K., et al. Childhood outcomes after hypothermia for neonatal encephalopathy. N Engl J Med. 2012; 366 (22): 2085-92. DOI: https://doi.org/10.1056/NEJMoa1112066 PMID: 22646631.

14. Azzopardi D., Strohm B., Marlow N., Brocklehurst P., Deierl A., Eddama O., et al. Effects of hypothermia for perinatal asphyxia on childhood outcomes. N Engl J Med. 2014; 371 (2): 140-9. DOI: https://doi.org/10.1056/NEJMoa1315788 PMID: 25006720.

15. Bindroo S., Quintanilla Rodriguez B.S., Challa H.J. Renal Failure. Treasure Island (FL), 2020. PMID: 30085554.

16. Akisu M., Huseyinov A., Yalaz M., Cetin H., Kultursay N. Selective head cooling with hypothermia suppresses the generation of plateletactivating factor in cerebrospinal fluid of newborn infants with perinatal asphyxia. Prostaglandins Leukot Essent Fatty Acids. 2003; 69 (1): 45-50. DOI: https://doi.org/10.1016/s0952-3278(03)00055-3 PMID: 12878450.

17. Eicher D.J., Wagner C.L., Katikaneni L.P., Hulsey T.C., Bass W.T., Kaufman D.A., et al. Moderate hypothermia in neonatal encephalopathy: safety outcomes. Pediatr Neurol. 2005; 32 (1): 18-24. DOI: https://doi.org/10.1016/j.pediatrneurol.2004.06.015 PMID: 15607599.

18. Gluckman P.D., Wyatt J.S., Azzopardi D., Ballard R., Edwards A.D., Ferriero D.M., et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet. 2005; 365 (9460): 663-70. DOI: https://doi.org/10.1016/S0140-6736(05)17946-X PMID: 15721471.

19. Gunn A.J., Gluckman P.D., Gunn T.R. Selective head cooling in newborn infants after perinatal asphyxia: a safety study. Pediatrics. 1998; 102 (4 Pt 1): 885-92. DOI: https://doi.org/10.1542/peds.102.4.885 PMID: 9755260.

20. Shankaran S., Laptook A.R., Ehrenkranz R.A., Tyson J.E., McDonald S.A., Donovan E.F., et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med. 2005; 353 (15): 1574-84. DOI: https://doi.org/10.1056/NEJMcps050929 PMID: 16221780.

21. Simbruner G., Mittal R.A., Rohlmann F., Muche R. Systemic hypothermia after neonatal encephalopathy: outcomes of neo.nEURO.network RCT. Pediatrics. 2010; 126 (4): 771-8. DOI: https://doi.org/10.1542/peds.2009-2441 PMID: 20855387.

22. Tanigasalam V, Bhat V, Adhisivam B., Sridhar M.G. Does therapeutic hypothermia reduce acute kidney injury among term neonates with perinatal asphyxia? A randomized controlled trial. J Matern Fetal Neonatal Med. 2016; 29 (15): 2545-8. DOI: https://doi.org/10.3109/14767058.2015.1094785 PMID: 26456813.

23. Zhou W., Cheng G., Shao X., Liu X., Shan R., Zhuang D., et al. Selective head cooling with mild systemic hypothermia after neonatal hypoxic-ischemic encephalopathy: a multicenter randomized controlled trial in China. J Pediatr. 2010; 157 (3): 367-72. DOI: https://doi.org/10.1016/j.jpeds.2010.03.030 PMID: 20488453.

24. Liu X., Chakkarapani E., Stone J., Thoresen M. Effect of cardiac compressions and hypothermia treatment on cardiac troponin I in newborns with perinatal asphyxia. Resuscitation. 2013; 84 (11): 1562-7. DOI: https://doi.org/10.1016/j.resuscitation.2013.07.003 PMID: 23856603.

25. Nestaas E., Skranes J.H., Stoylen A., Brunvand L., Fugelseth D. The myocardial function during and after whole-body therapeutic hypothermia for hypoxic-ischemic encephalopathy, a cohort study. Early Hum Dev. 2014; 90 (5): 247-52. DOI: https://doi.org/10.1016/j.earlhumdev.2014.01.014 PMID: 24612933.

26. Rakesh K., Vishnu Bhat B., Adhisivam B., Ajith P. Effect of therapeutic hypothermia on myocardial dysfunction in term neonates with perinatal asphyxia - a randomized controlled trial. J Matern Neonatal Med. 2018; 31 (18): 2418-23.

27. Vijlbrief D.C., Benders M.J.N.L., Kemperman H., van Bel F., de Vries W.B. Cardiac biomarkers as indicators of hemodynamic adaptation during postasphyxial hypothermia treatment. Neonatology. 2012; 102 (4): 243-8. DOI: https://doi.org/10.1159/000339117 PMID: 22907615.

28. Diederen C.M.J., van Bel F., Groenendaal F. Complications during therapeutic hypothermia after perinatal asphyxia: a comparison with trial data. Ther Hypothermia Temp Manag. 2018; 8 (4): 211-5. DOI: https://doi.org/10.1089/ther.2017.0046 PMID: 29733266.

29. Gulczynska E., Gadzinowski J., Kesiak M., Sobolewska B., Caputa J., Maczko A., et al. Therapeutic hypothermia in asphyxiated newborns: selective head cooling vs whole body cooling - comparison of short term outcomes. Ginekol Pol. 2019; 90 (7): 403-10. DOI: https://doi.org/10.5603/GP.2019.0069 PMID: 31392710.

30. Peliowski-Davidovich A.; Canadian Paediatric Society, Fetus and Newborn Committee. Hypothermia for newborns with hypoxic ischemic encephalopathy. Paediatr Child Health. 2012; 17 (1): 41-6. DOI: https://doi.org/10.1093/pch/17.1.41 PMID: 23277757.

31. Jacobs S.E., Berg M., Hunt R., Tarnow-Mordi W.O., Inder T.E., Davis P.G. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev. 2013; 1: CD003311. DOI: https://doi.org/10.1002/14651858.CD003311.pub3 PMID: 23440789.

32. Jetton J.G., Boohaker L.J., Sethi S.K., Wazir S., Rohatgi S., So-ranno D.E., et al. Incidence and outcomes of neonatal acute kidney injury (AWAKEN): a multicentre, multinational, observational cohort study. Lancet Child Adolesc Health. 2017; 1 (3): 184-94. DOI: https://doi.org/10.1016/S2352-4642(17)30069-X PMID: 29732396.

33. Aggarwal A., Kumar P., Chowdhary G., Majumdar S., Narang A. Evaluation of renal functions in asphyxiated newborns. J Trop Pediatr. 2005; 51 (5): 295-9. DOI: https://doi.org/10.1093/tropej/fmi017 PMID: 16000344.

34. Kaur S., Jain S., Saha A., Chawla D., Parmar V.R., Basu S., et al. Evaluation of glomerular and tubular renal function in neonates with birth asphyxia. Ann Trop Paediatr. 2011; 31 (2): 129-34. DOI: https://doi.org/10.1179/146532811X12925735813922 PMID: 21575317.

35. Karlowicz M.G., Adelman R.D. Nonoliguric and oliguric acute renal failure in asphyxiated term neonates. Pediatr Nephrol. 1995; 9 (6): 718-22. DOI: https://doi.org/10.1007/BF00868721 PMID: 8747112.

36. Hankins G.D., Koen S., Gei A.F., Lopez S.M., Van Hook J.W., Anderson G.D. Neonatal organ system injury in acute birth asphyxia sufficient to result in neonatal encephalopathy. Obstet Gynecol. 2002; 99 (5 Pt 1): 688-91. DOI: https://doi.org/10.1016/s0029-7844(02)01959-2 PMID: 11978273.

37. Jayashree G., Dutta A., Sarna M., Saili A. Acute renal failure in asphyxiated newborns. Indian Pediatr. 1991; 28: 19-23. PMID: 2055607.

38. Gupta B., Sharma P., Bagla J., Parakh M., Soni J. Renal failure in asphyxiated neonates. Indian Pediatr. 2005; 42: 928-34. PMID: 162 08054.

39. Martin-Ancel A., Garcia-Alix A., Gaya F., Cabanas F., Burgueros M., Quero J. Multiple organ involvement in perinatal asphyxia. J Pediatr. 1995; 127: 786-93. DOI: https://doi.org/10.1016/s0022-3476(95)70174-5 PMID: 7472837.

40. Ahmed N., Chowdhary J., Saif R. Acute renal failure: nephrosono-graphic findings in asphyxiated neonates. Saudi J Kidney Dis Transplant. 2011; 22 (6): 1187-92. PMID: 22089779.

41. Sarkar S., Askenazi D.J., Jordan B.K., Bhagat I., Bapuraj J.R., Dechert R.E., et al. Relationship between acute kidney injury and brain MRI findings in asphyxiated newborns after therapeutic hypothermia. Pediatr Res. 2014; 75 (3): 431-5. DOI: https://doi.org/10.1038/pr.2013.230 PMID: 24296799.

42. Chou Y.-H., Huang T.-M., Chu T.-S. Novel insights into acute kidney injury-chronic kidney disease continuum and the role of renin-angiotensin system. J Formos Med Assoc. 2017; 116 (9): 652-9. DOI: https://doi.org/10.1016/j.jfma.2017.04.026 PMID: 28615146.

43. Chaturvedi S., Ng K.H., Mammen C. The path to chronic kidney disease following acute kidney injury: a neonatal perspective. Pediatr Nephrol. 2017; 32 (2): 227-41. DOI: https://doi.org/10.1007/s00467-015-3298-9 PMID: 26809804.

44. Basile D.P. Rarefaction of peritubular capillaries following ischemic acute renal failure: a potential factor predisposing to progressive nephropathy. Curr Opin Nephrol Hypertens. 2004; 13 (1): 1-7. DOI: https://doi.org/10.1097/00041552-200401000-00001 PMID: 15090853.

45. Basile D.P., Donohoe D.L., Roethe K., Mattson D.L. Chronic renal hypoxia after acute ischemic injury: effects of l-arginine on hypoxia and secondary damage. Am J Physiol. 2003; 284 (2): F338-48. DOI: https://doi.org/10.1152/ajprenal.00169.2002 PMID: 12388385.

46. Yang L., Besschetnova T.Y., Brooks C.R., Shah J.V., Bonventre J.V. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med. 2010; 16 (5): 535-43. DOI: https://doi.org/10.1038/nm.2144 PMID: 20436483.

47. Greenberg J.H., Coca S., Parikh C.R. Long-term risk of chronic kidney disease and mortality in children after acute kidney injury: a systematic review. BMC Nephrol. 2014; 15 (1): 184. DOI: https://doi.org/10.1186/1471-2369-15-184 PMID: 25416588.

48. See E.J., Jayasinghe K., Glassford N., Bailey M., Johnson D.W., Polkinghorne K.R., et al. Long-term risk of adverse outcomes after acute kidney injury: a systematic review and meta-analysis of cohort studies using consensus definitions of exposure. Kidney Int. 2019; 95 (1): 160-72. DOI: https://doi.org/10.1016/j.kint.2018.08.036 PMID: 30473140.

49. Kellum J.A., Lameire N., Aspelin P., Barsoum R.S., Burdmann E.A., Goldstein S.L., et al. Kidney disease: Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012; 2 (1): 1-138.

50. Zappitelli M., Ambalavanan N., Askenazi D.J., Moxey-Mims M.M., Kimmel P.L., Star R.A., et al. Developing a neonatal acute kidney injury research definition: a report from the NIDDK neonatal AKI workshop. Pediatr Res. 2017; 82 (4): 569-73. DOI: https://doi.org/10.1038/pr.2017.136 PMID: 28604760.

51. Saw C.L., Rakshasbhuvankar A., Rao S., Bulsara M., Patole S. Current practice of therapeutic hypothermia for mild hypoxic ischemic encephalopathy. J Child Neurol. 2019; 34 (7): 402-9. DOI: https://doi.org/10.1177/0883073819828625 PMID: 30898007.

52. Sterne J.A., Gavaghan D., Egger M. Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. J Clin Epidemiol. 2000; 53 (11): 1119-29. DOI: https://doi.org/10.1016/s0895-4356(00)00242-0 PMID: 11106885.

53. Kicinski M., Springate D.A., Kontopantelis E. Publication bias in meta-analyses from the Cochrane Database of Systematic Reviews. Stat Med. 2015; 34 (20): 2781-93. DOI: https://doi.org/10.1002/sim.6525 PMID: 25988604.

54. Kontopantelis E., Springate D.A., Reeves D. A re-analysis of the Cochrane Library data: the dangers of unobserved heterogeneity in metaanalyses. PLoS One. 2013; 8 (7): e69930. DOI: https://doi.org/10.1371/journal.pone.0069930 PMID: 23922860.

55. van den Belt S.M., Heerspink H.J.L., Gracchi V., de Zeeuw D., Wuhl E., Schaefer F. Early proteinuria lowering by angiotensin-converting enzyme inhibition predicts renal survival in children with CKD. J Am Soc Nephrol. 2018; 29 (8): 2225-33. DOI: https://doi.org/10.1681/ASN.2018010036 PMID: 29930161.

56. Liu X., Tooley J., Loberg E.M., Suleiman M.S., Thoresen M. Im

mediate hypothermia reduces cardiac troponin i after hypoxic-ischemic encephalopathy in newborn pigs. Pediatr Res. 2011; 70 (4): 352-6. DOI: https://doi.org/10.1203/PDR.0b013e31822941ee PMID: 21691250.

57. Huang C.-H., Chen H.-W., Tsai M.-S., Hsu C.-Y., Peng R.-H., Wang T.-D., et al. Antiapoptotic cardioprotective effect of hypothermia treatment against oxidative stress injuries. Acad Emerg Med. 2009; 16 (9): 87280. DOI: https://doi.org/10.1111/j.1553-2712.2009.00495.x PMID: 19673708.

58. Teixeira R.P., Neves A.L., Guimaraes H. Cardiac biomarkers in neonatology: BNP/NTproBNP, troponin I/T, CK-MB and myoglobin - a systematic review. J Pediatr Neonatal Individ Med. 2017; 6 (2): e060219.

59. Shastri A.T., Samarasekara S., Muniraman H., Clarke P. Cardiac troponin I concentrations in neonates with hypoxic-ischaemic encephalopathy. Acta Paediatr. 2012; 101 (1): 26-9. DOI: https://doi.org/10.1111/j1651-2227.2011.02432.x PMID: 21801203.

60. Jedeikin R., Primhak A., Shennan A.T., Swyer P.R., Rowe R.D. Serial electrocardiographic changes in healthy and stressed neonates. Arch Dis Child. 1983; 58 (8): 605-11. DOI: https://doi.org/10.1136/adc.58.8.605 PMID: 6614975.

61. Mertens L., Seri I., Marek J., Arlettaz R., Barker P., McNamara P., et al. Targeted Neonatal Echocardiography in the Neonatal Intensive Care Unit: practice guidelines and recommendations for training. Writing Group of the American Society of Echocardiography (ASE) in collaboration with the European Association of Echocardiograpy. J Am Soc Echocardiogr. 2011; 24 (10): 1057-78.

62. Testori C., Beitzke D., Mangold A., Sterz F., Loewe C., Weiser C., et al. Out-of-hospital initiation of hypothermia in ST-segment elevation myocardial infarction: a randomised trial. Heart. 2019; 105 (7): 531-7. DOI: https://doi.org/10.1136/heartjnl-2018-313705 PMID: 30361270.

63. Nichol G., Strickland W., Shavelle D., Maehara A., Ben-Yehuda O., Genereux P., et al. Prospective, multicenter, randomized, controlled pilot trial of peritoneal hypothermia in patients with ST-segment- elevation myocardial infarction. Circ Cardiovasc Interv. 2015; 8 (3): e001965. DOI: https://doi.org/10.1161/CIRCINTERVENTIONS.114.001965 PMID: 25699687.

64. Erlinge D., Gotberg M., Lang I., Holzer M., Noc M., Clemmensen P, et al. Rapid endovascular catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction. The CHILL-MI trial: a randomized controlled study of the use of central venous catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction. J Am Coll Cardiol. 2014; 63 (18): 1857-65. DOI: https://doi.org/10.1016/jjacc.2013.12.027 PMID: 24509284.

65. Gotberg M., Olivecrona G.K., Koul S., Carlsson M., Engblom H.,

Ugander M., et al. A pilot study of rapid cooling by cold saline and endovascular cooling before reperfusion in patients with ST-elevation myocardial infarction. Circ Cardiovasc Interv. 2010; 3 (5): 400-7. DOI: https://doi.org/10.1161/CIRCINTERVENTIONS.110.957902 PMID: 20736446.

66. Dixon S.R., Whitbourn R.J., Dae M.W., Grube E., Sherman W., Schaer G.L., et al. Induction of mild systemic hypothermia with endovascular cooling during primary percutaneous coronary intervention for acute myocardial infarction. J Am Coll Cardiol. 2002; 40 (11): 1928-34. DOI: https://doi.org/10.1016/s0735-1097(02)02567-6 PMID: 12475451.

67. Wang Y.-S., Zhang J., Li Y.-F., Chen B.-R., Khurwolah M.R., Tian Y.-F., et al. A pilot clinical study of adjunctive therapy with selective intracoronary hypothermia in patients with ST-segment elevation myocardial infarction. Catheter Cardiovasc Interv. 2018; 92 (7): E433-40. DOI: https://doi.org/10.1002/ccd.27864 PMID: 30265431.

68. Grines C. Intravascular cooling adjunctive to percutaneous coronary intervention for acute myocardial infarction. The ICE-IT trial. Presented at: 16th Annual Transcatheter Cardiovascular Therapeutics. Washington, DC, 27 October 2004.

69. O’Neill W. A prospective randomized trial of mild systemic hypothermia during PCI treatment of ST elevation MI. The COOL MI trial. Presented at: 15th Annual Transcatheter Cardiovascular Therapeutics. Washington, DC, 16 September 2003.

70. Noc M., Erlinge D., Neskovic A.N., Kafedzic S., Merkely B., Zima E., et al. COOL AMI EU pilot trial: a multicentre, prospective, randomised controlled trial to assess cooling as an adjunctive therapy to percutaneous intervention in patients with acute myocardial infarction. EuroIntervention. 2017; 13 (5): e531-9. DOI: https://doi.org/10.4244/EIJ-D-17-00279 PMID: 28506940.

71. Bhatt G.C., Gogia P, Bitzan M., Das R.R. Theophylline and ami-nophylline for prevention of acute kidney injury in neonates and children: a systematic review. Arch Dis Child. 2019; 104 (7): 670-9. DOI: https://doi.org/10.1136/archdischild-2018-315805 PMID: 30798259.

All articles in our journal are distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0 license)

CHIEF EDITOR
CHIEF EDITOR
Degtyarev Dmitriy Nikolaevich
Doctor of Medical Sciences, Professor, Deputy Director for Scientific Research of the V.I. Kulakov Obstetrics, Gynecology and Perinatology National Medical Research Center of Ministry of Healthсаre of the Russian Federation, Head of the Chair of Neonatology at the Clinical Institute of Children's Health named after N.F. Filatov, I.M. Sechenov First Moscow State Medical University, Chairman of the Ethics Committee of the Russian Society of Neonatologists, Moscow, Russian Federation

ORCID iD 0000-0001-8975-2425

Journals of «GEOTAR-Media»