Ткани перинатального происхождения - уникальный источник клеток для регенеративной медицины. Часть I. Пуповинная кровь

Резюме

На протяжении последних 20 лет ткани перинатального происхождения стали объектом нарастающего внимания со стороны исследователей и практикующих специалистов в связи с перспективами использования в клеточной терапии широкого спектра приобретенных или наследственных заболеваний. Сотни клинических исследований направлены на изучение безопасности и эффективности клеток, выделяемых из пуповинной крови, плаценты, стромы пупочного канатика, плодных оболочек и амниотической жидкости, при самых разнообразных патологических состояниях в кардиологии, неврологии, ангиологии, травматологии и ортопедии, при заболеваниях печени, почек, репродуктивной системы и т.д. В данном обзоре авторы попытались суммировать некоторые данные, касающиеся свойств и перспектив применения в регенеративной медицине клеток и бесклеточных продуктов, получаемых всего из 2 источников: пуповинной крови и стромы пупочного канатика.

Ключевые слова:перинатальные ткани, пуповинная кровь, пупочный канатик, стволовые клетки, клеточная терапия, регенеративная медицина

Неонатология: новости, мнения, обучение. 2018. Т. 6. № 2. С. 64-77. doi: 10.24411/2308-2402-2018-00019

Есть мнение, что первые плацентарные появились на на­шей планете около 60-100 млн лет назад. Стало быть, тогда же свет увидели и первые связанные с родами "биологические отходы". В те стародавние времена они, скорее всего, становились одним из звеньев чьей-либо пи­щевой цепочки: по крайней мере, именно эта "традиция" доминирует и в современном животном мире. Конечно, человек разумный давно от этого отказался, хотя упомина­ния о необходимости сжечь, закопать или еще каким-либо образом скрыть послед можно найти в летописях совсем еще недавних времен и даже в некоторых современных обычаях.

Между тем основные компоненты этих самых побочных продуктов репродуктивной программы человека остались неизменными. Это плацента, плодные оболочки, пуповина, пуповинная кровь (ПК) и амниотическая жидкость. В раз­ные годы и с разным успехом каждый из этих компонентов пытались использовать во благо. Из плаценты готовили (и продолжают готовить) биологически активные добавки в питательные кремы, экстракты и препараты со стимулиру­ющим эффектом, а плодные оболочки нашли ограниченное применение при лечении ожогов и для закрытия тканевых дефектов.

Отношение к ПК также долгое время оставалось усто­явшимся: кровь, она и есть кровь, и самое лучшее, для чего ее можно использовать, так это перелить пациенту, нуж­дающемуся в трансфузии донорской крови при отсутствии последней.

В отечественной литературе сведения о применении ПК в терапевтических целях можно встретить в докумен­тах, датированных еще 1930-1940-ми гг. Именно тогда переливание плацентарной крови стали рассматривать как альтернативу трансфузии донорской или трупной крови, о чем свидетельствует целый рад публикаций и норматив­ных документов. В годы Великой Отечественной войны ПК спасла не одну тысячу жизней: еще в 1939 г. Наркомздрав СССР издал инструкцию "По организации в родовспомога­тельных учреждениях сбора, хранения и использования пла­центарной крови для целей переливания", а в 1941 г. обязал все родовспомогательные учреждения страны собирать ее и отправлять в госпитали для восполнения острой кровопотери (приказ № 59 от 12.11.1941 "Об организации сбора плацентарной крови во всех родильных домах и родильных отделениях больниц для целей переливания, хранение и использование ее"). В послевоенные годы практика пере­ливания цельной ПК сохранилась лишь в единичных странах и лишь по некоторым показаниям [1].

Клеточный состав пуповинной крови

До последнего времени интерес кПКв плане клини­ческого применения определялся прежде всего высоким содержанием кроветворных (гемопоэтических) стволовых клеток (ГСК), сходным с их содержанием в костном мозге: 1-10 ГСК на 1000 ядросодержащих клеток. Однако по срав­нению с клетками костного мозга клетки ПК обладают более высоким пролиферативным потенциалом [2], повышенным содержанием популяции, инициирующей длительную куль­туру (LTC-IC), и имеют более высокую теломеразную актив­ность [3-5]. Эти особенности клеток ПК связаны с их менее зрелым статусом по сравнению с клетками костного мозга или других "взрослых" источников. Подтверждением высо­кой активности ГСК ПК является и то, что, несмотря на неко­торое отставание в темпах восстановления нормальной фор­мулы крови после миелоаблативного кондиционирования (высокодозной химиотерапии), доза требуемых для успеш­ной трансплантации клеток ПК примерно в 10 раз ниже рав­ной по эффективности ядросодержащих клеток костного мозга [14, 15].

В дополнение к гемопоэтическим СК ПК содержит и дру­гие популяции клеток, в частности способных инициировать и/или стимулировать ангиогенез. Так, популяция CD34+/ СD19+-клеток, составляющая чуть менее половины всех ГСК ПК, способна дифференцироваться в функционально актив­ные эндотелиальные клетки in vitro и in vivo [6], а VEGF-R3+/ CD34+-клетки сохраняют это свойство на протяжении 40-кратного размножения в культуре [7]. При этом содер­жание подобных клеток в ПК примерно в 10 раз выше, чем в костном мозге. Нефракционированная ПК также обладает способностью стимулировать ангиогенез, что подтверждено в целом ряде исследований [8, 9].

Относительно недавно в ПК была выявлена попу­ляция CD34-негативных клеток с эмбрионально-подобными характеристиками (экспрессирующих OCT-4, Nanog, SSEA-3 и SSEA-4), способных дифференцироваться в производные всех 3 зародышевых листков: мезо-, экто- и эндодермы [10].

Присутствие в ПК клеток с аналогичными свойствами - нео­граниченных соматических стволовых клеток (Unrestricted Somatic Stem CeLLs, USSC) - описано и в работах других авто­ров [11, 12].

Текущее применение клеток пуповинной крови

Совсем скоро 2018 г. ознаменуется 30-летним юби­леем трансплантации ПК: под руководством профессора E. GLuckman во Франции была выполнена первая родствен­ная трансплантация 5-летнему пациенту с анемией Фан-кони [13]. В последующие годы трансплантация клеток ПК стала общепризнанным способом восстановления кровет­ворения у пациентов детского возраста и взрослых со зло­качественными гематологическими заболеваниями [14]. По последним данным, для этих целей более 700 тыс. гото­вых к трансплантации единиц ПК включено в международ­ные регистры; еще около 1 млн образцов хранятся в семей­ных банках пуповинной крови. В мире выполнено более 40 тыс. трансплантаций клеток ПК; с помощью данного под­хода вылечены более 25 тыс. пациентов [15]. В целом транс­плантация ПК показала себя эффективной альтернативой трансплантации костного мозга, особенно в случае расовых и/или этнических особенностей пациентов, для которых трудно подобрать совместимого неродственного донора, даже при наличии более 20 млн потенциальных доноров костного мозга [14].

Другие компоненты пуповинной крови

К их числу можно отнести эритроциты, тромбоциты и жидкую составляющую крови - плазму (сыворотку). Наи­большее применение в клинической практике (в том числе в неонатологии) нашло, пожалуй, переливание аутологичных или донорских "переносчиков газов" - эритроцитарной массы [16].

Наиболее частыми показаниями к переливанию эритроцитарной массы или цельной ПК являются анемия недоно­шенных [17-20] и острая кровопотеря как результат хирур­гического вмешательства [21, 22]. Однако заместительная гемотрансфузия или переливание донорских эритроцитов, применяемые в качестве стандартного метода коррекции тяжелых форм анемии, сопряжены с риском трансфузионных осложнений, потенцируют угнетение продукции эндо­генного эритропоэтина, что может приводить к рецидивам анемии. Кроме этого, использование для данных целей донорской ПК несет определенные риски, связанные с воз­можностью аллоиммунизации и/или передачи инфекцион­ных, в том числе вирусных, агентов [23]. В этой связи предпо­чтение отдается использованию именно аутологичной крови [24, 25]. Примечательно, что реинфузия клеток аутологичной ПК пациентам первых дней жизни с гипоксической/ишемической энцефалопатией также показала обнадеживающие результаты [26].

В регенеративной медицине использование сыворотки ПК и лизата тромбоцитов находит все более широкое при­менение в связи с поиском оптимального состава сред для культивирования клеток, предназначенных для клиниче­ского применения и не содержащих ксеногенных компонен­тов [27-31].

Совсем недавно открылась еще одна потенциальная область применения трансфузии плазмы ПК: выяснилось, что ее переливание старым животным не только вызы­вает омолаживающий эффект, но и способствует нейрогенезу, улучшению функций гиппокампа, повышению обучаемости и памяти [32]. Отчасти подобный эффект может опосредоваться как целой плеядой растворимых молекул [33], содержащихся в плазме/сыворотке ПК (цитокинов, хемокинов, ростовых и антиапоптотических факто­ров) (табл. 1), так и содержащимися в них микровезикулами и экзосомами [34].

Примечательно, что сходные регуляторные сигналы, циркулирующие в крови плода и попадающие в кровоток будущей матери, способны как оказывать омолаживающий эффект в ходе беременности, так и влиять на продолжитель­ность жизни в дальнейшем [35]. Не исключается перспектив­ность аналогичного подхода и к лечению ряда возрастных нейродегенеративных заболеваний: болезни Паркинсона, деменции и болезни Альцгеймера, бокового амиотрофического склероза [36, 37]. Сами фетальные клетки также спо­собны проникать в материнский кровоток во время беремен­ности [38] и могут быть обнаружены даже через несколько лет после родов [39, 40].

С наличием в сыворотке ПК факторов роста, стимулиру­ющих регенерацию эпителиальных клеток, связана еще одна область ее применения: лечение поражений роговицы раз­личного генеза и синдрома сухого глаза [41-43].

Возможность применения АВ0/ Rh-совместимой пуповинной крови

Как уже отмечалось, ПК может быть безопасно исполь­зована в качестве замены периферической донорской крови для гемотрансфузии. Поскольку HLA-типирование до относительно недавнего времени было недоступно, а каких-либо нежелательных последствий переливания не отме­чено, логично предположить, что переливание ПК может применяться без соответствующего "кондиционирования" реципиента. Подтверждение этому можно найти в работах многих авторов. Так, более чем 100 пациентам детского возраста с тяжелой анемией была проведена трансфузия цельной АВ0-совместимой крови (средняя доза составила 85 мл) без предшествующего HLA-типирования [44]. Неже­лательных последствий, в том числе реакции "трансплантат против хозяина" (РТПХ) не выявлено, в связи с чем ПК была признана доступным материалом для трансфузии в случаях, когда донорская периферическая кровь недоступна по эко­номическим или социальным причинам. Результаты перели­вания 413 единиц ПК 129 пациентам с различными заболе­ваниями (онкологическими, системной красной волчанкой, апластической анемией и т.д.) без HLA-типирования и "кон­диционирования" приведены в работах и других исследо­вателей [45-47]. Интересно, что трансфузия ПК пациентам, инфицированным ВИЧ, сопровождалась временным повы­шением содержания в крови CD34-положительных клеток без признаков РТПХ [48].

Таким образом, суммируя имеющиеся данные литера­туры, можно заключить, что переливание ПК пациентам с нормально функционирующей иммунной системой явля­ется безопасной процедурой, не приводящей к тяжелым осложнениям. В данной ситуации, по мнению N.H. Riordan и соавт., "самое плохое, что пуповинная кровь может сде­лать, это не сделать ничего" [49].

Клеточная терапия и регенеративная медицина

Эти два словосочетания появились на страницах науч­ных и медицинских изданий относительно недавно, каких-то 15-20 лет назад. Сегодня существует несколько опреде­лений этих терминов, наиболее емким из которых можно считать следующее: "Клеточная терапия - комплекс меди­цинских приемов, основанных на введении в организм паци­ента (реципиента) живых клеток с целью восстановления утраченной функции, лечения, профилактики или снижения тяжести заболевания". По своей сути понятие "клеточная терапия" весьма близко к другому часто используемому определению - "регенеративная медицина", хотя послед­нее, по-видимому, несколько шире: для стимуляции реге­нерации могут быть использованы не только сами клетки, но и различные составы на их основе (включая 3D-матриксы), а также бесклеточные композиции, содержащие секретируемые клетками продукты жизнедеятельности (см. ниже).

Интерес и к самим клеткам ПК, и к возможности их клини­ческого применения огромен, об этом свидетельствует нарас­тающее в логарифмической шкале число научных публикаций и проводимых клинических исследований (табл. 2).

Доклинические исследования

Еще в 2001 г. было показано, что введение клеток ПК эффективно в модели острого ишемического инсульта и способно снижать физический и неврологический дефи­цит у животных, перенесших окклюзию средней мозговой артерии [50]. В последующих исследованиях было установ­лено, что терапевтический эффект может быть достигнут, даже если клетки не достигают пораженной ткани мозга [51, 52], однако зависит от дозы введенных клеток и про­является в уменьшении размера пораженного участка [53]. Одновременно в ткани мозга экспериментальных животных выявлялось повышенное содержание фактора роста нервов (Nerve Growth Factor, NGF), глиального нейротрофического (Glial cell-Derived Neurotrophic Factor, GDNF) и мозгового нейротрофического (Brain-Derived Neurotrophic Factor, BDNF) факторов, что указывает на возможный паракринный эффект введенных клеток. Другим механизмом нейропротекторного эффекта ПК могут быть снижение каспазозависимой гибели клеток стриатума и противовоспалительный эффект в отношении клеток коры мозга [54].

Первое сообщение о возможности применения клеток ПК при экспериментальной гипоксической энцефалопатии относится к 2006 г. [55]. В данном исследовании крысам внутрибрюшинно вводили 10 млн клеток через 24 ч после индуцированной ишемии мозга. В результате через 2 нед было отмечено значительное улучшение моторных функций по сравнению с контрольными животными. Значительное количество клеток ПК выявлялось в поврежденной гемисфере, однако они не экспрессировали маркеры нейрональной или астроцитарной дифференцировки. Положительная динамика в неврологическом статусе животных с перина­тальными поражениями головного мозга в ответ на введе­ние клеток ПК отмечена в работах и других авторов [56-61]. По мнению авторов, введение клеток ПК опосредованно сни­жает уровень апоптоза и вторичной гибели клеток "незре­лого" мозга, а также повышает уровень его пластичности в ответ на ишемию.

Поскольку трансфузия клеток ПК так проявила себя при ишемических поражениях головного мозга, было бы неудивительно, что она проявит себя и при травматических поражениях. Подтверждением можно считать работы, пока­завшие эффективность внутривенной инфузии клеток ПК в модели травмы головного и спинного мозга у крыс [62, 63].

Терапевтический эффект клеток ПК отмечен и при нейродегенеративных заболеваниях. Так, было показано, что введение клеток способно замедлить прогрессию бокового амиотрофического склероза и продлить жизнь трансгенных животных [64, 65]. Системное введение клеток ПК позволяло также уменьшить циркуляторный шок и последующее повреж­дение мозга в модели его теплового повреждения [66].

Таким образом, приведенные выше исследования под­тверждают терапевтический эффект клеток ПК при инду­цированных ишемических и перинатальных повреждениях мозга. Присутствие самих клеток ПК в мозге, по-видимому, не является необходимым, а обнаруженный эффект не свя­зан с замещением поврежденных клеток новообразован­ными из клеток ПК.

Механизм действия клеток пуповинной крови

Несмотря на обширный экспериментальный и клини­ческий материал, подтверждающий эффективность кле­ток ПК при поражениях головного и спинного мозга раз­личного генеза, вопрос о механизмах терапевтической эффективности остается открытым [67, 68]. Считается, что трансплантированные клетки ПК могут участвовать в реге­нерации поражений центральной нервной системы (ЦНС) в качестве уникального регулятора активности нейронов и глиальных клеток благодаря продукции нейротрофических факторов [61]. И сами клетки ПК, и клетки, получаемые путем их дифференцировки in vitro, продуцируют целый ряд нейротрофических факторов, таких как BDNF, GDNF, нейротрофины 3 и 4-5 [69]. Одним из подтверждений этой гипо­тезы можно считать работу C.V. BorLongan и соавт. [51], пока­завших, что внутривенное введение клеток ПК значительно повышает концентрацию GDNF, BDNF и фактора роста нервов (Nerve Growth Factor, NGF) в крови животных с эксперимен­тальным инсультом по сравнению с контрольными, не полу­чавшими инфузии клеток. В качестве другого подтверждения можно рассматривать результаты, полученные при введении клеток ПК непосредственно в мозг после его ишемического повреждения и показавшие стимуляцию "прорастания" нервных волокон из неповрежденного полушария в область поражения [70]. Помимо перечисленных ростовых и нейротрофических факторов, клетки ПК способны синтезировать и секретировать целую плеяду биологически активных сое­динений (GRO-α, MIP-1a, MCP-1, MCP-3, RANTES, SDF-1, G-CSF, GM-CSF, интерлейкины 6 и 8), оказывющих нейропротекторное, иммуномодулирующее, антиапоптотическое и противо­воспалительное действие (см. табл. 1).

Клинические исследования

По данным международного интернет-ресурса www. clinicaltrials.gov, исследования безопасности и эффек­тивности клеток ПК при неонкологических заболеваниях проводятся в целом ряде клинических центров (табл. 3). Большинство из них представляют собой I-II фазы кли­нических исследований, находятся в стадии проведения или "рекрутирования" пациентов, в связи с чем официаль­ные данные об их результативности пока отсутствуют. Тем не менее отдельные сведения можно найти в материалах симпозиумов и конференций на темы "Пуповинная кровь" и "Клеточная терапия", а также в единичных печатных рабо­тах и пресс-релизах, опубликованных в течение нескольких последних лет.

Так, в работе W.-Z. Yang и соавт. представлен анализ лечения 114 пациентов с различными формами невроло­гических заболеваний (параплегия, атаксия, рассеянный склероз, боковой амиотрофический склероз, детский цере­бральный паралич, последствия травматических поражений головного мозга и т.п.) с помощью повторного (до 4-5 раз) интратекального и/или внутривенного введения мононуклеарной фракции клеток аллогенной HLA-несовместимой ПК [71]. Значимых сдвигов в результатах гематологиче­ского, биохимического и иммунного статуса пациентов обнаружено не было. Побочные явления в виде головной боли, кратковременного повышения температуры, тошноты или рвоты были выявлены у 38 (33,3%) пациентов. По всей видимости, столь высокая частота нежелательных реакций связана с тем, что клетки ПК использовали без отмывки от криопротектора и (или) интратекальным способом вве­дения. К сожалению, авторы работы сконцентрировали внимание исключительно на побочных эффектах: данные об эффективности проведенной терапии в публикации отсутствуют.

В более позднем исследовании тех же авторов приво­дятся результаты, полученные при использовании аллогенных клеток ПК у 30 пациентов с врожденной атаксией [72]. После проведенного лечения (от 4 до 6 инфузий) значимое улучшение (>50% по шкале Berg BaLance ScaLe, BBS) было констатировано у 13 пациентов; у 17 пациентов эффект был менее выражен и составлял 5-49%. В целом по группе BBS показатели изменились с 35,62±11,25 до 45,25±9,33 (р<0,001). В отличие от предыдущей работы побочных эффектов терапии не выявлено.

В работе корейских исследователей оценена безопас­ность и эффективность внутривенного введения аутологичных клеток ПК 20 пациентам детского (2-10 лет) воз­раста с установленным диагнозом "детский церебральный паралич" (ДЦП) (11 с тетрапарезом, 6 с гемипарезом и 3 с диплегией) [73]. Клетки были предоставлены частным бан­ком пуповинной крови в Сеуле. Суспензия размороженных "у постели больного" клеток вводилась внутривенно без премедикации и без отмывки от криопротектора в средней дозе 5,5±3,8 (0,6-15,65х107) клеток/кг с последующей регидратационной терапией. Через 6 мес наблюдения улучшение неврологического статуса было отмечено у 25% детей (преи­мущественно с более легкими формами заболевания - гемии диплегией). Описанные в работе нежелательные явления (повышение температуры тела, тошнота, рвота, гемоглобинурия), по мнению авторов, связаны с токсичностью криопротектора (диметилсульфоксида) и/или лизисом эритроцитов в процессе размораживания клеточной суспензии.

В работе K. Min и соавт. [74] представлены результаты двойного слепого рандомизированного плацебо-контроли-руемого исследования эффективности применения клеток ПК и эритропоэтина у пациентов с ДЦП. Фактически в работе идет речь о трансплантации клеток ПК, поскольку они подби­рались с учетом результатов HLA-типирования (совпадение не менее 4 из 6 аллелей), вводились в достаточно высокой дозе (не менее 3х107 клеток/кг) и после "кондиционирова­ния" пациента циклоспорином. С этим, возможно, и связан высокий уровень нежелательных реакций (преимущественно инфекционного генеза и/или со стороны желудочно-кишеч­ного тракта), приведший к экстренной госпитализации 9 и гибели 1 из 105 пациентов, участвовавших в исследовании. Тем не менее в группе пациентов, получавших клетки, через 6 мес было выявлено достоверное улучшение показателей неврологического статуса, когнитивных функций и физиче­ской активности по сравнению с контрольной группой.

Справедливости ради следует отметить, что определен­ные успехи были достигнуты в применении клеток ПК для лечения аутизма и некоторых других психических заболева­ний [25, 75-78].

Наиболее последовательную политику в отношении применения клеток ПК при заболеваниях ЦНС можно про­следить в работах команды исследователей под руковод­ством профессора J. Kurtzberg Дж. (Университет Дьюка, США). Начиная с 2010 г. коллективом была опубликована целая серия работ, целью которых стало изучение как био­логических особенностей самих клеток, так и безопасности и эффективности внутривенного введения клеток ауто­логичной ПК при ряде перинатальных поражений голов­ного мозга, включая врожденную гидроцефалию и ДЦП [75, 79-82].

Так, с марта 2004 г. по декабрь 2009 г. были проведены ограниченные клинические исследования безопасности и эффективности внутривенной инфузии аутологичных клеток ПК пациентам детского возраста с приобретенными неврологическими заболеваниями [83, 84]. Большин­ство единиц ПК были предоставлены частными банками крови. В общей сложности выполнено 198 трансфузий 184 пациентам, из которых 140 был поставлен диагноз ДЦП, 23 - "гидроцефалия". Доза вводимых клеток составляла не менее 107 на 1 кг массы тела пациента; для снижения риска нежелательных реакций клетки предварительно отмывали от криопротектора, а само введение проводилось после премедикации метилпреднизолоном. Основное внимание в работе было уделено сравнительным характеристикам образцов, полученных из частных или публичных банков пуповинной крови и деталям их подготовки; данные по кли­нической эффективности в публикации отсутствуют. Тем не менее низкая частота серьезных нежелательных явлений (3 случая анафилактических реакций в первые минуты процедуры) и отсутствие аутоиммунных, инфекционных, онко­логических и иных осложнений на протяжении последующих 12 мес позволили авторам сделать заключение о безопасно­сти и перспективности предложенного подхода.

В последующем за этим исследовании (октябрь 2006 г. -август 2014 г.) 76 пациентов детского возраста (от 6 дней до 4,5 года) с врожденной гидроцефалией получили в общей сложности 143 введения клеток ПК при средней дозе 1,9х107 клеток/кг [80]. Примечательно, что у большинства пациентов процедура проводилась повторно (у 45 - дважды, у 18 - трижды). И вновь основное внимание в работе уде­лено анализу особенностей использованных "доз" клеток и их подготовке к трансфузии; данные по эффективности отсутствуют, несмотря на достаточно длительный период наблюдения (до 7 лет). Тем не менее серьезных побочных реакций не выявлено ни у одного из пациентов-участников, что позволило авторам трактовать процедуру повторного введения как безопасную.

Анализу эффективности предлагаемого подхода (опять-таки аутологичных клеток ПК) посвящена более поздняя публи­кация результатов рандомизированного проспективного двой­ного слепого плацебо-контролируемого исследования [79]. Группе из 63 пациентов (1-6 лет) было выполнено одно­кратное внутривенное введение клеток в дозе 1-5х107/кг. Из этических соображений группа плацебо также полу­чила введение клеток, но по прошествии 1 года наблюдения в качестве группы контроля. Полученные через год резуль­таты эффективности оказались не столь радужными, как, воз­можно, ожидалось: достоверных различий между основной и контрольной группами по шкалам PDMS-2 и GMFM-66 выяв­лено не было. Единственные достоверные различия были обнаружены между группами, получившими большее или меньшее относительно медианы 2х107 клеток/кг число клеток: больше - лучше, из чего авторы заключают, что клинический эффект является дозозависимым, а для получения эффектив­ной дозы, зачастую недостижимой при использовании аутологичной крови, возможно, придется в дальнейшем подумать об использовании клеток донорского происхождения.

Именно этот путь и был выбран в последнем из опу­бликованных на сегодняшний день исследований [85], посвященном применению аллогенных (донорских) AB0-совместимых клеток ПК у пациентов взрослого возраста, перенесших ишемический инсульт. В ходе I фазы клиниче­ского исследования 10 пациентам (18-90 лет) с острым ишемическим инсультом в бассейне средней мозговой артерии однократно внутривенно вводили клетки ПК в промежутке 3-10 сут от момента события. Доза клеток варьиро­вала от 5х106 до 5х107 при медиане 1,54х107 клеток/кг, что в абсолютных значениях составило 1,68 (0,84-2,92х109) ядросодержащих клеток на введение. Через 3 мес улучшение в неврологическом, физическом и функциональном статусе (модифицированная шкала Рэнкина, шкала инсульта Наци­онального института здоровья США, индекс Бартела) было констатировано у всех пациентов. Несмотря на отсутствие контрольной группы и невозможность говорить о специ­фичности полученных эффектов, авторы работы настроены оптимистично и планируют проведение II фазы рандомизи­рованных плацебо-контролируемых исследований.

Практически в то же время (2007-2010 гг.) на базе ряда специализированных научно-исследовательских институтов Москвы и Санкт-Петербурга была проведена серия пилот­ных клинических исследований безопасности и эффектив­ности внутривенной инфузии "концентрата ядросодержащих клеток пуповинной/плацентарной крови" у пациентов с поражениями ЦНС различного генеза [77, 86-93]. В каче­стве терапевтического средства использовалась отмытая от криопротектора суспензия аллогенных ABO/Rh-идентичных ядросодержащих клеток ПК. В отличие от зарубежных иссле­дований, где доза клеток варьировала и вводилась преиму­щественно по принципу "все и сразу", в данном случае она была стандартизована и составляла около 250-300 млн кле­ток на введение.

Последующее наблюдение за пациентами на про­тяжении от 3-12 мес до 3-4 лет показало, что введение (в том числе повторное) клеток ПК хорошо переносится и не вызывает острых или отдаленных нежелательных реак­ций. Напротив, у большинства пациентов как взрослого, так и детского возраста наблюдалось значительное сни­жение степени неврологического дефицита и улучшение когнитивных функций. Так, у детей и взрослых пациентов с травматическими поражениями головного мозга (пост­травматической энцефалопатией) отмечалась стойкая тен­денция к снижению проявлений астенического синдрома; существенно повышался уровень инициативы, психиче­ской и физической активности [77, 90, 94]. У пациентов с болезнью Паркинсона статистически значимое улучшение было отмечено по многим показателям: ригидности, брадикинезии и функциональным возможностям [86]. Стойкое, до нескольких лет, улучшение показателей психической активности (объема повседневной активности, памяти, обу­чаемости, способности к концентрации внимания и т.д.), вплоть до достижения возрастной нормы, отмечено у больных шизофренией [77].

В исследование были включены 30 пациентов с ДЦП в возрасте от 1 года 3 мес до 10 лет (средний возраст 5±2,5 года). Основными клиническими проявлениями за­болевания были: спастический гемипарез (38,7%), тетрапарез (22,6%), эпилептический синдром (47,4%). После письменного информированного согласия паци­ентам были проведены 1 (8 пациентов) или 2 и более (22 пациента) внутривенных капельных инфузий кле­ток ПК (повторные введения проводились с интервалом в 2-4 нед). Дальнейшее наблюдение показало, что про­цедура хорошо переносится и не вызывает острых или отдаленных нежелательных реакций. Напротив, более чем у половины детей наблюдалась отчетливая положительная динамика: снижение патологически повышенного мышеч­ного тонуса на 1-2 балла, уменьшение степени парезов на 1-2 балла, снижение частоты (вплоть до полного пре­кращения) эпилептических приступов при сохранении дозы противосудорожных препаратов, снижение гиперкинезов, улучшение когнитивных функций (памяти, внимания, скорости реакций), мелкой моторики, зрительных функций и речи [77, 87, 88, 92, 93]. Лучшие результаты были достигнуты у пациентов, получивших 2 и более инфузий клеток ПК.

Исследования, проведенные в последующие годы на базе ФГБУ "Научный центр акушерства, гинекологии и перинатологии им. акад. В.И. Кулакова" Минздрава России (ныне -ФГБУ "Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии им. акад. В.И. Кулакова" Минздрава России) и продолжающиеся в настоящее время, позволили систематизировать накоплен­ный материал и выявить ряд закономерностей [95].

Группу клеточной терапии составили 80 пациентов дет­ского возраста (1-12 лет) с клинически подтвержденным диагнозом ДЦП, включая 40 со спастической квадриплегией, 24 со спастической ди- или гемиплегией и 16 с другими фор­мами ДЦП. У большинства пациентов ДЦП ассоциировался с другими патологическими состояниями, такими как эпи­лепсия (n=20), врожденная гидроцефалия (n=7), частичная атрофия зрительных нервов (n=10) и другими поражениями (n=5). Большинство детей (n=55) имели задержку психиче­ского и речевого развития.

В соответствии с планами лечения и его стадией (началь­ное или продолжающееся) пациенты получили 1 (n=7), 2 (n=18), 3 (n=19), 4 (n=15) или 5 (n=14) введений клеток. 7 пациентов получили 6 введений клеток (2 начальных и 4 с промежутком в 4-6 мес). Время наблюдения соста­вило от 3 мес до 3 лет. За это время позитивная дина­мика была отмечена у 38 (69,1%) пациентов. Улучшение в неврологическом статусе характеризовалось снижением патологического мышечного тонуса в одной или более пораженных конечностей, возрастанием мышечной силы, снижением частоты эпилептических приступов. Улучше­ние в ментальной сфере (речь, память, внимание, интеллектуальное/эмоциональное развитие) было отмечено у 29 (52,7%) детей. 23 (41,8%) пациента продемонстри­ровали улучшение в обеих сферах. Негативной динамики не выявлено ни у одного пациента, получившего клеточную терапию.

Наилучшие результаты получены в ответ на 5 и более введений - 85,7 и 100% соответственно (r=0,48, p<0,0024). Сходная корреляция была выявлена при анализе измене­ний физического развития по шкале GMFCS - подавляющее большинство респондеров получили минимум 4 введения. В целом полученные результаты показали, что повторное внутривенное введение аллогенных HLA-несовместимых AB0/Rh-идентичных клеток ПК пациентам с ДЦП является безопасной и в большинстве случаев эффективной процеду­рой. По крайней мере, частичное улучшение в неврологиче­ском статусе, физической активности и/или интеллектуаль­ном развитии было достигнуто примерно в 70% случаев.

Заключение

Приведенные данные свидетельствуют о несомненных перспективах применения как клеток ПК, так и других отдель­ных ее компонентов в терапии достаточно широкого спек­тра патологических состояний организма. В особенности (за редким исключением) это касается использования кле­ток или их производных аллогенного происхождения - фак­тически "препарата с полки", способного сделать клеточ­ные интервенции и регенеративную медицину на основе клеток ПК доступными для всех пациентов, нуждающихся в этой терапии.

ЛИТЕРАТУРА

1. GLuckman E. UmbiLicaL cord bLood transfusions in Low-income countries // Lancet HaematoL. 2015. VoL. 2, N 3. P. e85-e86.

2. Theunissen K., VerfaiLLie C.M. A muLtifactoriaL anaLysis of umbiLicaL cord bLood, aduLt bone marrow and mobilized peripheraL bLood progenitors using the improved ML-IC assay // Exp. HematoL. 2005. VoL. 33, N 2. P. 165-172.

3. Ng Y.Y., van KesseL B., Lokhorst H.M., Baert M.R.M. et aL. Gene-expression profiLing of CD34+ ceLLs from various hematopoietic stem-ceLL sources reveaLs functionaL differences in stem-ceLL activity // J. Leukoc. BioL. 2004. VoL. 75, N 2. P. 314-323.

4. Hogan C.J., ShpaLL E.J., McNuLty O., McNiece I. et aL. Engraftment and deveLopment of human CD34(+)-enriched ceLLs from umbiLicaL cord bLood in NOD/LtSz-scid/scid mice // BLood. 1997. VoL. 90, N 1. P. 85-96.

5. Sakabe H., Yahata N., Kimura T., Zeng Z.Z. et aL. Human cord bLood-derived primitive progenitors are enriched in CD34+c-kit- ceLLs: correLation between Long-term cuLture-initiating ceLLs and teLomerase expression. Leukemia. 1998. VoL. 12, N 5. P. 728-734.

6. HiLdbrand P., CiruLLi V., Prinsen R.C., Smith K.A. et aL. The roLe of angiopoietins in the deveLopment of endotheLiaL ceLLs from cord bLood CD34+ progenitors // BLood. 2004. VoL. 104, N 7. P. 2010-2019.

7. SaLven P., Mustjoki S., ALitaLo R., ALitaLo K. et aL. VEGFR-3 and CD133 identify a popuLation of CD34+ Lymphatic/vascuLar endotheLiaL precursor ceLLs // BLood. 2003. VoL. 101, N 1. P. 168-172.

8. Cho S.-W., Gwak S.-J., Kang S.-W., Bhang S.H. et aL. Enhancement of angiogenic efficacy of human cord bLood ceLL transpLantation // Tissue Eng. 2006. VoL. 12, N 6. P. 1651-1661.

9. Botta R., Gao E., Stassi G., Bonci D. et aL. Heart infarct in NOD-SCID mice: therapeutic vascuLogenesis by transpLantation of human CD34+ ceLLs and Low dose CD34+KDR+ ceLLs // FASEB J. 2004. VoL. 18, N 12. P. 1392-1394.

10. Zhao Y., Wang H., Mazzone T. Identification of stem ceLLs from human umbiLicaL cord bLood with embryonic and hematopoietic characteristics // Exp. CeLL Res. 2006. VoL. 312, N 13. P. 2454-2464.

11. Kogler G., Sensken S., Airey J.A., Trapp T. et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential // J. Exp. Med. 2004. Vol. 200, N 2. P. 123-135.

12. McGuckin C.P., Forraz N., Allouard Q., Pettengell R. Umbilical cord blood stem cells can expand hematopoietic and neuroglial progenitors in vitro // Exp. Cell Res. 2004. Vol. 295, N 2. P. 350-359.

13. Gluckman E., Broxmeyer H.A., Auerbach A.D., Friedman H.S. et al. Hematopoietic reconstitution in a patient with Fanconi's anemia by means of umbilical-cord blood from an HLA-identical sibling // N. Engl. J. Med. 1989. Vol. 321, N 17. P. 1174-1178.

14. Ballen K.K., Gluckman E., Broxmeyer H.E. Umbilical cord blood transplantation: the first 25 years and beyond // Blood. 2013. Vol. 122, N 4. P. 491-498.

15. Ballen K. Update on umbilical cord blood transplantation // F1000Research. 2017. Vol. 6. P. 1556.

16. Christensen R.D., Carroll P.D., Josephson C.D. Evidence-based advances in transfusion practice in neonatal intensive care units // Neonatology. 2014. Vol. 106, N 3. P. 245-253.

17. Eichler H., Schaible T., Richter E., Zieger W. et al. Cord blood as a source of autologous RBCs for transfusion to preterm infants // Transfusion. 2000. Vol. 40, N 9. P. 1111-1117.

18. Khodabux C.M., Brand A. The use of cord blood for transfusion purposes: current status // Vox Sang. 2009. Vol. 97, N 4. P. 281-293.

19. Khodabux C.M., van Beckhoven J.M., Scharenberg J.G.M., El Barjiji F. et al. Processing cord blood from premature infants into autologous red-blood-cell products for transfusion // Vox Sang. 2011. Vol. 100, N 4. P. 367-373.

20. Strauss R.G., Widness J.A. Is there a role for autologous/placental red blood cell transfusions in the anemia of prematurity? // Transfus. Med. Rev. 2010. Vol. 24, N 2. P. 125-129.

21. Imura K., Kawahara H., Kitayama Y., Yoneda A. et al. Usefulness of cord-blood harvesting for autologous transfusion in surgical newborns with antenatal diagnosis of congenital anomalies // J. Pediatr. Surg. 2001. Vol. 36, N 6. P. 851-854.

22. Taguchi T., Suita S., Nakamura M., Yamanouchi T. et al. The efficacy of autologous cord-blood transfusions in neonatal surgical patients // J. Pediatr. Surg. 2003. Vol. 38, N 4. P. 604-607.

23. Jansen M., Brand A., von Lindern J.S., Scherjon S. et al. Potential use of autologous umbilical cord blood red blood cells for early transfusion needs of premature infants // Transfusion. 2006. Vol. 46, N 6. P. 1049-1056.

24. Романов Ю.А., Балашова Е.Е., Быстрых О.А., Титков К.В. и др. Пуповинная кровь для аутологичной трансфузии в раннем постнатальном периоде: анализ клеточного состава и жизнеспособности клеток при дли­тельном хранении // Клеточные технологии в биологии и медицине. 2014. № 4. С. 206-214.

25. Kotowski M., Litwinska Z., Klos P., Pius-Sadowska E. et al. Autologous cord blood transfusion in preterm infants - could its humoral effect be the kez to control prematurity-related complications? A preliminary study // J. Physiol. Pharmacol. 2017. Vol. 68, N 6. P. 921-927.

26. Cotten C.M., Murtha A.P., Goldberg R.N., Grotegut C.A. et al. Feasibility of autologous cord blood cells for infants with hypoxic-ischemic encephalopathy // J. Pediatr. 2014. Vol. 164, N 5. P. 973-979.e1.

27. Astori G., Amati E., Bambi F., Bernardi M. et al. Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/ stromal cells: present and future // Stem Cell Res. Ther. 2016. Vol. 7, N 1. P. 93.

28. Riordan N.H., Madrigal M., Reneau J., de Cupeiro K. et al. Scalable efficient expansion of mesenchymal stem cells in xeno free media using commercially available reagents // J. Transl. Med. 2015. Vol. 13. P. 232.

29. Suchankova Kleplova T., Soukup T., Rehacek V., Suchanek J. Human plasma and human platelet-rich plasma as a substitute for fetal calf serum during long-term cultivation of mesenchymal dental pulp stem cells // Acta Medica (Hradec Kralove). 2014. Vol. 57, N 3. P. 119-126.

30. Diez J.M., Bauman E., Gajardo R., Jorquera J.I. Culture of human mesenchymal stem cells using a candidate pharmaceutical grade xeno-free cell culture supplement derived from industrial human plasma pools // Stem Cell Res. Ther. 2015. Vol. 6. P. 28.

31. Romanov Y.A., Balashova E.E., Volgina N.E., Kabaeva N.V. et al. Human umbilical cord blood serum: effective substitute of fetal bovine serum for culturing of human multipotent mesenchymal stromal cells // Bull. Exp. Biol. Med. 2017. Vol. 162, N 4. P. 528-533.

32. Castellano J.M., Mosher K.I., Abbey R.J., McBride A.A. et al. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice // Nature. 2017. Vol. 544, N 7651. P. 488-492.

33. Pereira T., Ivanova G., Caseiro A.R., Barbosa P. et al. MSCs conditioned media and umbilical cord blood plasma metabolomics and composition // PLoS One. 2014. Vol. 9, N 11. Article ID e113769.

34. Hu Y., Rao S.-S., Wang Z.-X., Cao J. et al. Exosomes from human umbilical cord blood accelerate cutaneous wound healing through miR-21-3p-mediated promotion of angiogenesis and fibroblast function // Theranostics. 2018. Vol. 8, N 1. P. 169-184.

35. Popkov V.A., Silachev D.N., Jankauskas S.S., Zorova L.D. et al. Molecular and cellular interactions between mother and fetus. Pregnancy as a rejuvenating factor // Biochemistry (Mosc.). 2016. Vol. 81, N 12. P. 1480-1487.

36. Galieva L.R., Mukhamedshina Y.O., Arkhipova S.S., Rizvanov A.A. Human umbilical cord blood cell transplantation in neuroregenerative strategies // Front. Pharmacol. 2017. Vol. 8. P. 628.

37. Horowitz A.M., Villeda S.A. Therapeutic potential of systemic brain rejuvenation strategies for neurodegenerative disease // F1000Research. 2017. Vol. 6. P. 1291.

38. Lo Y.M., Lo E.S., Watson N., Noakes L. et al. Two-way cell traffic between mother and fetus: biologic and clinical implications // Blood. 1996. Vol. 88, N 11. P. 4390-4395.

39. Bianchi D.W., Zickwolf G.K., Weil G.J., Sylvester S. et al. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum // Proc. Natl Acad. Sci. USA. 1996. Vol. 93, N 2. P. 705-708.

40. O'Donoghue K., Chan J., de la Fuente J., Kennea N. et al. Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy // Lancet (London, England). 2004. Vol. 364, N 9429. P. 179-182.

41. Yoon K.C. Use of umbilical cord serum in ophthalmology // Chonnam Med. J. 2014. Vol. 50, N 3. P. 82-85.

42. Vajpayee R.B., Mukerji N., Tandon R., Sharma N. et al. Evaluation of umbilical cord serum therapy for persistent corneal epithelial defects // Br. J. Ophthalmol. 2003. Vol. 87, N 11. P. 1312-1316.

43. Yoon K.-C., Heo H., Jeong I.-Y., Park Y.-G. Therapeutic effect of umbilical cord serum eyedrops for persistent corneal epithelial defect // Korean J. Ophthalmol. 2005. Vol. 19, N 3. P. 174-178.

44. Hassall O., Bedu-Addo G., Adarkwa M., Danso K. et al. Umbilical-cord blood for transfusion in children with severe anaemia in under-resourced countries // Lancet (London, England). 2003. Vol. 361, N 9358. P. 678-679.

45. Bhattacharya N. Placental umbilical cord whole blood transfusion: a safe and genuine blood substitute for patients of the under-resourced world at emergency // J. Am. Coll. Surg. 2005. Vol. 200, N 4. P. 557-563.

46. Bhattacharya N. Placental umbilical cord blood transfusion: a novel method of treatment of patients with malaria in the background of anemia // Clin. Exp. Obstet. Gynecol. 2006. Vol. 33, N 1. P. 39-43.

47. Bhattacharya N. Placental umbilical cord whole blood transfusion to combat anemia in the background of tuberculosis and emaciation and its potential role as an immuno-adjuvant therapy for the under-resourced people of the world // Clin. Exp. Obstet. Gynecol. 2006. Vol. 33, N 2. P. 99-104.

48. Bhattacharya N. A preliminary report of 123 units of placental umbilical cord whole blood transfusion in HIV-positive patients with anemia and emaciation // Clin. Exp. Obstet. Gynecol. 2006. Vol. 33, N 2. P. 117-121.

49. Riordan N.H., Chan K., Marleau A.M., Ichim T.E. Cord blood in regenerative medicine: do we need immune suppression? // J. Transl. Med. 2007. Vol. 5. P. 8.

50. Chen J., Sanberg P.R., Li Y., Wang L. et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats // Stroke. 2001. Vol. 32, N 11. P. 2682-2688.

51. Borlongan C.V., Hadman M., Sanberg C.D., Sanberg P.R. Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke // Stroke. 2004. Vol. 35, N 10. P. 2385-2389.

52. Newman M.B., Willing A.E., Manresa J.J., Sanberg C.D. et al. Cytokines produced by cultured human umbilical cord blood (HUCB) cells: implications for brain repair // Exp. Neurol. 2006. Vol. 199, N 1. P. 201-208.

53. Vendrame M., Cassady J., Newcomb J., Butler T. et al. Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioraL deficits and reducesinfarct voLume // Stroke. 2004. VoL. 35, N 10. P. 2390-2395.

54. PimenteL-CoeLho P.M., Mendez-Otero R. CeLL therapy for neonataL hypoxic-ischemic encephaLopathy // Stem CeLLs Dev. 2010. VoL. 19, N 3. P. 299-310.

55. Meier C., MiddeLanis J., WasieLewski B., Neuhoff S., Roth-Haerer A. et aL. Spastic paresis after perinataL brain damage in rats is reduced by human cord bLood mononucLear ceLLs // Pediatr. Res. 2006. VoL. 59, N 2. P. 244-249.

56. Rosenkranz K., Kumbruch S., Tenbusch M., Marcus K. et aL. TranspLantation of human umbiLicaL cord bLood ceLLs mediated beneficiaL effects on apoptosis, angiogenesis and neuronaL survivaL after hypoxic-ischemic brain injury in rats // CeLL Tissue Res. 2012. VoL. 348, N 3. P. 429-438.

57. de PauLa S., Greggio S., Marinowic D.R., Machado D.C. et aL. The dose-response effect of acute intravenous transpLantation of human umbiLicaL cord bLood ceLLs on brain damage and spatiaL memory deficits in neonataL hypoxiaischemia // Neuroscience. 2012. VoL. 210. P. 431-441.

58. DaLous J., Larghero J., Baud O. TranspLantation of umbiLicaL cord-derived mesenchymaL stem ceLLs as a noveL strategy to protect the centraL nervous system: technicaL aspects, precLinicaL studies, and cLinicaL perspectives // Pediatr. Res. 2012. VoL. 71, N 4. Pt 2. P. 482-490.

59. DaLous J., Pansiot J., Pham H., ChateL P. et aL. Use of human umbiLicaL cord bLood mononucLear ceLLs to prevent perinataL brain injury: a precLinicaL study // Stem CeLLs Dev. 2013. VoL. 22, N 1. P. 169-179.

60. CarroLL J. Human cord bLood for the hypoxic-ischemic neonate // Pediatr. Res. 2012. VoL. 71, N 4. Pt 2. P. 459-463.

61. Bae S.-H., Kong T.-H., Lee H.-S., Kim K.-S. et aL. Long-Lasting paracrine effects of human cord bLood ceLLs on damaged neocortex in an animaL modeL of cerebraL paLsy // CeLL TranspLant. 2012. VoL. 21, N 11. P. 2497-2515.

62. Lu D., Sanberg P.R., Mahmood A., Li Y. et aL. Intravenous administration of human umbiLicaL cord bLood reduces neuroLogicaL deficit in the rat after traumatic brain injury // CeLL TranspLant. 2002. VoL. 11, N 3. P. 275-281.

63. Ryabov S.I., Zvyagintseva M.A., PavLovich E.R., Smirnov V.A. et aL. Efficiency of transpLantation of human pLacentaL/umbiLicaL bLood ceLLs to rats with severe spinaL cord injury // BuLL. Exp. BioL. Med. 2014. VoL. 157, N 1. P. 85-88.

64. Ende N., Weinstein F., Chen R., Ende M. Human umbiLicaL cord bLood effect on sod mice (amyotrophic LateraL scLerosis) // Life Sci. 2000. VoL. 67, N 1. P. 53-59.

65. Garbuzova-Davis S., WiLLing A.E., Zigova T., Saporta S. et aL. Intravenous administration of human umbiLicaL cord bLood ceLLs in a mouse modeL of amyotrophic LateraL scLerosis: distribution, migration, and differentiation // J. Hematother. Stem CeLL Res. 2003. VoL. 12, N 3. P. 255-270.

66. Chen S.H., Chang F.M., Tsai Y.C., Huang K.F. et aL. Infusion of human umbiLicaL cord bLood ceLLs protect against cerebraL ischemia and damage during heatstroke in the rat // Exp. NeuroL. 2006. VoL. 199, N 1. P. 67-76.

67. Domanska-Janik K., Buzanska L., Lukomska B. A novel, neuraL potentiaL of non-hematopoietic human umbiLicaL cord bLood stem ceLLs // Int. J. Dev. BioL. 2008. VoL. 52, N 2-3. P. 237-248.

68. Arien-Zakay H., Lecht S., NagLer A., Lazarovici P. Human umbiLicaL cord bLood stem ceLLs: rationaL for use as a neuroprotectant in ischemic brain disease // Int. J. MoL. Sci. 2010. VoL. 11, N 9. P. 3513-3528.

69. Fan C.-G., Zhang Q.-J., Tang F.-W., Han Z.-B. et aL. Human umbiLicaL cord bLood ceLLs express neurotrophic factors // Neurosci. Lett. 2005. VoL. 380, N 3. P. 322-325.

70. Xiao J., Nan Z., Motooka Y., Low W.C. TranspLantation of a noveL ceLL Line popuLation of umbiLicaL cord bLood stem ceLLs ameLiorates neuroLogicaL deficits associated with ischemic brain injury // Stem CeLLs Dev. 2005. VoL. 14, N 6. P. 722-733.

71. Yang W.-Z., Zhang Y., Wu F., Min W.-P. et aL. Safety evaLuation of aLLogeneic umbiLicaL cord bLood mononucLear ceLL therapy for degenerative conditions // J. TransL. Med. 2010. VoL. 8. P. 75.

72. Yang W.-Z., Zhang Y., Wu F., Zhang M. et aL. Human umbiLicaL cord bLood-derived mononucLear ceLL transpLantation: case series of 30 subjects with hereditary ataxia // J. TransL. Med. 2011. VoL. 9. P. 65.

73. Lee Y.-H., Choi K.V., Moon J.H., Jun H.-J. et aL. Safety and feasibiLity of countering neuroLogicaL impairment by intravenous administration of autoLogous cord bLood in cerebraL paLsy // J. TransL. Med. 2012. VoL. 10. P. 58.

74. Min K., Song J., Kang J.Y., Ko J. et aL. UmbiLicaL cord bLood therapy potentiated with erythropoietin for chiLdren with cerebraL paLsy: a doubLe-bLind, randomized, pLacebo-controLLed triaL // Stem CeLLs. 2013. VoL. 31, N 3. P. 581-591.

75. Sun J.M., Kurtzberg J. CeLL therapy for diverse centraL nervous system disorders: inherited metaboLic diseases and autism // Pediatr. Res. 2018. VoL. 83, N 1-2. P. 364-371.

76. Lv Y.-T., Zhang Y., Liu M., Qiuwaxi J. et aL. TranspLantation of human cord bLood mononucLear ceLLs and umbiLicaL cord-derived mesenchymaL stem ceLLs in autism // J. TransL. Med. 2013. VoL. 11. P. 196.

77. Смирнов В.Н., Романов Ю.А., Пальцев М.А., Поляков Ю.И. и др. Те­рапевтический потенциал клеток пуповинной крови при неврологических и психических заболеваниях // Клеточная трансплантология и тканевая ин­женерия. 2011. Т. 6, № 1. С. 25-26.

78. Смулевич А.Б., Дубницкая Э.Б., Воронова Е.И., Морозова Я.В. и др. Эффективность клеток пуповинной крови у пациентов с терапевтически ре­зистентными депрессиями // Клеточные технологии в биологии и медицине. 2015. № 4. С. 279-285.

79. Sun J.M., Song A.W., Case L.E., Mikati M.A. et aL. Effect of autoLogous cord bLood infusion on motor function and brain connectivity in young chiLdren with cerebraL paLsy: a randomized, pLacebo-controLLed triaL // Stem CeLLs TransL. Med. 2017. VoL. 6, N 12. P. 2071-2078.

80. Sun J.M., Grant G.A., McLaughLin C., ALLison J. et aL. Repeated autoLogous umbiLicaL cord bLood infusions are feasibLe and had no acute safety issues in young babies with congenitaL hydrocephaLus // Pediatr. Res. 2015. VoL. 78, N 6. P. 712-716.

81. Dawson G., Sun J.M., DavLantis K.S., Murias M. et aL. AutoLogous cord bLood infusions are safe and feasibLe in young chiLdren with autism spectrum disorder: resuLts of a singLe-center phase I open-LabeL triaL // Stem CeLLs TransL. Med. 2017. VoL. 6, N 5. P. 1332-1339.

82. Sun J.M., Kurtzberg J. Cord bLood for brain injury // Cytotherapy. 2015. VoL. 17, N 6. P. 775-785.

83. Sun J., ALLison J., McLaughLin C., SLedge L. et aL. Differences in quaLity between privateLy and pubLicLy banked umbiLicaL cord bLood units: a piLot study of autoLogous cord bLood infusion in chiLdren with acquired neuroLogic disorders // Transfusion. 2010. VoL. 50, N 9. P. 1980-1987.

84. Liao Y., Cotten M., Tan S., Kurtzberg J. et aL. Rescuing the neonataL brain from hypoxic injury with autoLogous cord bLood // Bone Marrow TranspLant. 2013. VoL. 48, N 7. P. 890-900.

85. Laskowitz D., Bennett E., Durham R., VoLpi J. et aL. ALLogeneic umbiLicaL cord bLood infusion for aduLts with ischemic stroke (CoBIS): cLinicaL outcomes from a phase 1 safety study // Stem CeLLs TransL Med. 2018 May 12. ArticLe ID 29752869. doi: 10.1002/sctm.18-0008.

86. KLimov I.A., Chachatrian W.A., Lebedev K.E., Romanov Y. et aL. Intravenous infusion of cord bLood ceLLs (CBC) in patients with Parkinson disease. 3rd Int. Conf. Drug. Discov. Ther. Feb 7-10, 2011, Dubai, UAE // Curr. Med. Chem. 2011. Sp. Issue. Abstr. 212.

87. Chachatrian W.A., Lebedev K.E., Romanov Y., Smirnov V.N. Cord bLood ceLLs (CBC) in the treatment of cerebraL paLsy. 3rd Int. Conf. Drug Discov. Ther. Feb 7-10, 2011, Dubai, UAE // Curr. Med. Chem. 2011. Sp. Issue. Abstr. 105.

88. Smirnov V.N., Romanov Y.A., PaLtsev M.A., Smirnov V.A. et aL. Therapeutic potentiaL of human cord bLood ceLLs in patients with neuroLogicaL and psychiatric disorders. "MSC2009" - Regen Med. AduLt Stem CeLL Ther., August 17-19, 2009. CLeveLand, OH, 2009. P. 112.

89. Smirnov V.N., Romanov Y.A., Radaev S.M., Dugina T.N. et aL. Human umbiLicaL cord bLood ceLLs in the treatment of patients with cerebraL paLsy: a three-year experience. 8th Ann. WorLd Congr. Regen. Med. Stem CeLLs, March 19-21, 2015. Korea, 2015. P. 95.

90. Semenova J.B., Ahadov T.A., Karaseva O.V., Semenova N.A. et aL. Cord bLood ceLLs (CBC) in the treatment of chiLdreb brain trauma. 3rd Int. Conf. Drug Discov. Ther. Feb 7-10, 2011, Dubai, UAE // Curr. Med. Chem. 2011. Sp Issue. Abstr. 206.

91. Романов Ю.А., Хачатрян В.А., Лебедев К.Э., Радаев С.М. и др. Тера­певтический потенциал клеток пуповинной крови при перинатальных пора­жениях головного мозга // Материалы конференции "Детский церебральный паралич и другие расстройства движения у детей". М., 17-18 нояб. 2011. С. 152-153.

92. Романов Ю.А., Тараканов О.П., Радаев С.М., Дугина Т.Н. и др. Терапев­тический потенциал клеток пуповинной крови в лечении спастических форм детского церебрального паралича Материалы 2-й конференции "Детский церебральный паралич и другие нарушения движения у детей". М., 5-6 окт. 2012. С. 122.

93. Романов Ю.А., Тараканов О.П., Радаев С.М., Дугина Т.Н. др. Ис­пользование концентрата ядросодержащих клеток пуповинной крови в лечении спастических форм ДЦП // Материалы III ежегодной научно-прак­тической конференции с международным участием "Детский церебральный паралич и другие нарушения движения у детей". М., 30 окт. - 1 нояб. 2013. С. 78-79.

94. Семенова Ж.Б., Сушкевич Г.Н., Карасева О.В., Ахадов Т.А. и др. Ис­пользование концентрата стволовых клеток пуповинной, плацентарной крови в лечении последствий тяжелой черепно-мозговой травмы у детей // Нейрохирургия и неврология детского возраста. 2011. № 1. С. 70-82.

95. Romanov Y.A., Tarakanov O.P., Radaev S.M., Dugina T.N. et al. Human allogeneic AB0/Rh-identical umbilical cord blood cells in the treatment ofjuvenile patients with cerebral palsy // Cytotherapy. 2015. Vol. 17, N 7. P. 969-978.

Материалы данного сайта распространяются на условиях лицензии Creative Commons Attribution 4.0 International License («Атрибуция - Всемирная»)

ГЛАВНЫЙ РЕДАКТОР
ГЛАВНЫЙ РЕДАКТОР
Дегтярев Дмитрий Николаевич
Доктор медицинских наук, профессор, заместитель директора по научной работе ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии им. акад. В.И. Кулакова» Минздрава России, заведующий кафедрой неонатологии Клинического института детского здоровья имени Н.Ф. Филатова ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский университет), председатель Этического комитета Российского общества неонатологов, Москва, Российская Федерация

Журналы «ГЭОТАР-Медиа»